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ABSTRACT. A homogeneous random process on the circle {X(P): P E SJ is 

a process whose mean is constant and whose covariance function depends 

only on the angular distance 8 between the two points; i.e., ErY(P)I : n 

and cov(Y(P), X(Q)) = R(S). Given T independent realizations of a 

Gaussian homogeneous process X(P), we first propose estimates of the mean 

and of the spectral parameters. 

estimates is derived. Further, 

The exact distribution of these 

an estimate R (T)(O) of the covariance 

function R(0) is proposed. Exact expressions for its first and second- 

order moments are derived and it is shown that the sequence of processes 

(T4[R(T)(o) - R(O) 1 I;=1 converges weakly in CrO,nl to a given Gaussian 

process. 

1. Introduction. 

Let {X(P): P E S) he a real-valued process on the unit circle 

S of the two-dimensional space R2 , which has finite second-order moment 

and which is continuous in quadratic mean (q.m.). Under these conditions, 

the process X(P) can be expanded in a Fourier series which is convergent 
. . In q.m.. 

(1.1) 

where 

(1.2) 

X(P) = Co1 + 
c 

ICnl cos(nP) + Cn2 sin(nP)) , 

n=l 

I 2?l 

co1 = 2n 1 / X(P) dP , 
0 

2?I 

C 1 =- nl 71 
/ 0 

X(P) cos(nP) dP , 

I 
2?l 

C 1 =- n2 71 / X(P) sin(nP) dP, n 2 1 . 
4 0 
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The integrals in (1.2) are defined in the q.m. sense and the se- 

ries (1.1) converges in q.m. 

The process X(P) is said to be homogeneous if its first and se- 

cond-order moments are invariant under the group of rotations of the 

circle. This is equivalent to say that the mean E[X(P)l E V, a constant, 

and that the covariance function cov(X(P), X(Q)) depends only on the 

angular distance OpQ between the points P and Q. Obviously, EIX(P)I z IJ 

implies that 

(1.3) 

IJ if n = 0, i = 1, 

EICnil = 

0 if n > 0, i = 1, 2 . 

Also, from Yaglom 9, theorem 5 (see Roy 6 for a more elemen- 

tary proof), the homogeneity property implies that the coefficients Cni 

are uncorrelated; i.e., 

(1.4) cov(Cni, Cmj> = 6.. Anrn an 2 0 , 
=J 

for all possible values of i, j, n, m, d being the Kronecker delta. 

From (1.1) and (1.4), it is easily deduced that 

(1.5) COV(X(P), X(Q)) = R(O,Q) =kan cos(nopQ), opQ~[o,nl 3 

where the spectral parameters a n are defined by (1.4) and satisfy 

(1.6) c a -coo. n 
n=O 

An analysis of data from a process on the circle is presented in 

Benton and Kahn 1. See also Hannan 4 for application in hydrology. 

The purpose of the paper is to develop a spectral analysis when 

independent realizations of the process on the circle are available. 

practice, the process is sampled at a finite number of points for each 

realization. 

In 

However, if the observations are fairly evenly distributed 
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over the circle, one will be able to evaluate numerically the Fourier 
coefficients and the results presented here will be applicable. 

The case of realizations stationary in time has been studied by 

Roy 6; however, all the results obtained there are asymptotic in 

nature. By taking advantage of the independence of the realizations, 

one will be able to deduce some exact results. In section 2, estimates 

of the mean and of the spectral parameters are proposed and some of 

their exact properties are deduced in the case of a Gaussian process. 

In section 3, a covariance function estimate is presented and some 

of its statistical properties are derived. 

2. Spectral estimates. 

In the following, we will say that the process X(P) is Gaussian 

if, for any finite collection of points Pl, P2,..., Pk c S, X(Pl),...,X(Pk) 

have a joint normal distribution. For a Gaussian process, the co- 

efficients C ni have a joint normal distribution since they are defined 

as q.m. integrals and since the q.m. limit of a sequence of finite 

linear combinations of jointly normal variables is normal. Using (1.3) 
and (1.4), we deduce that the coefficients Cni are mutually independent 

with Co1 being N(p, ao) and Cni being N(O,a,) for i = 1, 2, n = 1, 2,... . 

Given T(T > 1) independent realizations of the process on the 

circle: (X(P,t): P E sl, t = 1, . . . . T,we can compute the coefficients 

Cni(t) corresponding to the tth realization, t = 1, . . . . T. By the 

previous remarks, we see that the random variables C ,,(t), t = 1, . . . . T 
are independent and identically distributed N(v, aG). So, the usual 

estimates of n and a0 are given respectively by 

T T 

(2.1) 11 0) = 1. 
T c cop, (T) 1 

a() =g c( 
cop - lJ l 

t=1 t=l 

When n > 0, we have E[Czi(t)] = an for i = 1, 2 and a simple 
unbiased estimate of an is given by - 
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(2.2) 

T 
.(T) = 1 

n 2T n>O. 

The properties of the proposed estimates are summarized in the following 

theorem. 

THEOREM 2.1. Let X(P) be a Gaussian homogeneous process whose mean is P 

and let pCT), a(T) n , n > 0, be the estimates defined by (2.1) and (2.2). 

Then, the estimates p (‘0 , a(T) n , n 2 0, are mutually independent with 

!J (‘0 and a(T) being & xGel if n = 0, 2 X;T if n 

denotes c-r chi-square variable with n degrees 

of freedom). 

From the previous theorem, we see that 

(2.3) 

(T-1) ifn=O, 

ifn>O, 

which means that a (‘0 
n is consistent for an . 

If only one realization IX(P): P E S) is available, then the 

spectral estimates for n 1 1 are given by 

Replacing Cni by its definition (1.2) and using the fact that 

CO.5 n(P - Q) = cos n 0 PQ ' 

one can write 
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cos (n OpQ) X(P) X(O) dP dQ , n>l. 

By an argument analogous to the one used in Jones 5, one can 

show that a (1) is the unbiased estimate of minimum variance in the class n 
of quadratic estimates of the form 

Wn(P,Q> X(P) X(Q) dP d0 

where TJ,(P,Q) is real-valued, symmetric and square integrable. 

3. Estimation of the covariance function. 

Given T realizations of the process on the circle, as an 

estimate of the covariance function R(O), we consider 

(3.1) RcT) (0) = 
c 

,(T) 
n cos no, 01017T, 

n=O 

where for each T, NT is a positive integer. An analogous estimate for 

the covariance function of a process on the sphere has been studied by 

Roy [71. From Schoenberg C83, R (T) (0) represents a positive definite 

function on the circle since a CT) 2 0 for all n 2 0 . We have n 

(3.2) E[R(T)(o)] = c an cos nO , 

n=O 

which means that R (T)(O) is asymptotically unbiased for R(O) if 

NT + 0~ as T + 00. Furthermore, for a Gaussian process, using the 
('0 independence of the an 's and equation (2.3), we obtain 

2a 2 NT 

(3.3) cov R(T)(O,), R(T)(O2)) = & + $ c a2 cos(nOl) cos (no,) . n 
n=l 

so, 
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lim T cov R 
Ta 

(T)(Ol), R(T) co24 

which is well defined since c 2 a < n 
n=l 

m by (1.6) . 

The bias of our estimate is given by 

(3.4) 

which implies that 

cm 

= 2aE + 
c 

at cos(nOl) cos(n02) , 

n=l 

R(O) - E[R (T)(o)] =C an cos nO , 

n>N T 

IR(O) - E[R (T)(o)l( 
n>N T 

and by a suitable choice of the NT's, the bias can be uniformly reduced 

to the order of magnitude we want. 

A useful technique to choose NT would be to compare 

NT 

R(T)(O) = c aAT) for different values of NT with the usual estimate of 

n=O 

T n 

the variance s2 = -& 
Cc( 

X(PjJ> - P for a given choice of 

t=l j=l 

pl' . . . . Pn E S and take the value of NT for which we have nearly 

equality. This would allow us to conclude that the bias of R (T) (0) is 

negligible. 

From (3.3) and (3.4), we see that the mean square error of 

R(T)(0) is given by 
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(3.5) E 

NT 

= 2 i- $ c ai cos2(nO) 

n=l 

+(z an cos(nO))Z. 

T 

For example, if the NT's are such that 

(3.6) TJI 
c 

a +O n asT+w, 
n>N T 

1imT E I( R(T)(O) - 
T- 

R(0))2] = 2ai + %a: cos2(n@) . 

n=l 

For the following, let us define the processes 

YT (0) = TI(R(T)(0) - E(R(T)(0)]}, 0 5 0 2 71 . 

If the NT's satisfy the condition (3.6), the results obtained for 

the processes YT(B) will be valid also for the processes 

- R(O) since sup -EIR(T)(0)]}+OasT+a. 
0501T 

THEOREM 3.1. Under the assumption of Theorem 2.1 and if NT + 03 as T -P 00, 

then for any 01, . . . . OkcCO,nl, (YT(Ol), . . . . YT (ok)) is asymptotically 
normal with mean zero and covariance matrix 

L = 2ai + a: cos(nOi) cos (no ) 1 i,j=l ' 
n=l 1 

Proof. If cum (Xl, . . . . Xl) denotes the joint cumulant of order h of 

xl, . . . . 5-l' we have only to show that cum{YT(QiJ, . . . . YT(oih))+ 0 

. for il, . . . . ih E{l, . . ..k) andh > 2. By elementary properties of 
cumulants (see for example Brillinger 3,section 1), for h > 2 , 
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= Y2 2 cos(*oil). . . cos(noih) cux (a*CT) ) , 

n=O 

where cu%(X) d enotes the cumulant of order h of the random variable X. 
Furthermore, cu% (x;) = (h-l)! 2h-1 n for h 2 1 and from theorem 2.1, 

we have that 

ifn=O, 

ifn>O. 

Then, we obtain 

/cum{YT(Oil), . . . . YT(Oih)) ( 2 M T(1-h'2) $ ai 9 
= 

where the constant M is independent of T and the proof is complete 

since c ah < 03 by (1.6) . n 
n=O 

From the previous theorem, we have the convergence of the finite 

dimensional distributions of {Y,(O): 9 I 0 5 n). Under a stronger 

assumption on the process on the circle; i.e., 

(3.7) 

co 
c n2 a2 n <03, 
n=O 

we can establish the weak convergence of the processes YT(0). Condition 
(3.7) is a regularity condition and means that the spectral parameters 

a decrease faster to zero than under the existence of the second n 
moment of X(P). 
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THEOREM 3.2. Under the assumptions of Theorem 3.1 and if (3.7) is 

satisfied, the processes {YT(B): 0 I 0 5 n) converge Weakly in C[O,rl 

to a Gaussian process {Y(O): O~O~nlwithmean 0 and 

.ov(Y (OJ Y(02)) = 2aE + C ai cos(nOl)cos(n02) . 

n=l 

Proof. {YT(B)? is a sequence of random elements of CCO,nl. Since we 

already have the convergence of the finite dimensional distributions, 

by Theorems 8.1, 12.3 and 12.4 of Billingsley C21, it is sufficient 

to show that 

- ',( '1) 1'1 s /F(02) - F(Ol)la , 

for Ol 5 O2 and T 2 1, where y 2 0, a > 1 and F is a non-decreasing, 

continuous function on CO,Tl. 

(0 Using the independence of the an 's and equation (2.3), we 

obtain 

E [/yT(02) - YT (01)12] = 2 at (cos no2 - cos n01)2 . 
n=l 

By the inequality 

cos a - cos 81 2 la - 4 9 

we can write 

E ‘T (‘2) - YT(Ol)/21 ' IO2 - 0112 5 n2 an 
n=l 

I M O2 - ol , I I 2 

where M = 
c 

n 2 a2 < 0~ by (3.7) and is independent of T. Thus, the 
n 

n=O 
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proof is complete. 

If (3.6) is satisfied, the previous theorem is also valid for 

the sequence of processes T +( R(T) (0) - R(O) . i This allows us to 

assert the convergence in distribution of functionals such as 

T+ sup I 

71 
T 
I’ 

R(T)(O) - R(O) 2 d@ , 
0 

to corresponding functionals based on the Gaussian process Y(0) of the 

Theorem. 
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