Jean-Marie Dufour April 29, 2016

McGill University ECON 706 Special topics in econometrics Final exam

No documentation allowed Time allowed: 3 hours

20 points 1. Provide brief answers to the following questions (maximum of 1 page per question).

- (a) Explain the difference between the "level" of a test and its "size".
- (b) Explain the difference between the "level" of a confidence set and its "size".
- (c) Discuss the link between tests and confidence sets: how confidence sets can be derived from tests, and vice-versa.
- (d) Explain what the Bahadur-Savage theorem entails for testing in nonparametric models.
- (e) Suppose we wish to test the hypothesis

 $H_0: X_1, \dots, X_n$ are independent random variables each with a distribution symmetric about zero. (1)

What condition should this test satisfy to have level 0.05.

20 points 2. Consider the following equilibrium model:

$$D_{t} = a + bp_{t} + u_{1t},$$

$$S_{t} = c + dp_{t-1} + ex_{t} + fx_{t-1} + u_{2t},$$

$$Q_{t} = D_{t} = S_{t}, \quad t = 1, ..., T$$

where D_t is the demand for a product, S_t the supply for the same product, Q_t the quantity produced, x_t is an exogenous variable, p_0 and x_0 are fixed, and $u_t = (u_{1t}, u_{2t})'$ is random vector such that $E(u_t) = 0$.

- (a) Give the structural form associated with this model.
- (b) Give the reduced form of this model.
- (c) Find the short-term multipliers for p_t and Q_t .
- (d) Find the final form of the model.
- (e) Find the dynamic multipliers for p_t .
- (f) Find the long-run form of the model and the long-term multipliers for p_t and Q_t .
- 20 points 3. Consider the following assumptions:
 - H1: the variables Y_1, \ldots, Y_n are independent and follow the same distribution with density $f(y; \theta), \theta \in \Theta \subseteq \mathbb{R}^p$;
 - H2: the interior of Θ is non-empty, and θ_0 belongs to the interior of Θ ;
 - H3: the true unknown value θ_0 is identifiable;
 - H4: the log-likelihood

$$L_n(y; \theta) = \sum_{i=1}^n \log [f(y_i; \theta)] \text{ is continuous in } \theta;$$

- H5: $\mathsf{E}_{\theta_0}[\log f(Y_i; \theta)]$ is finite;
- H6: the log-likelihood is such that $\frac{1}{n}L_n(y;\theta)$ converges almost surely to $\mathsf{E}_{\theta_0}[\log(Y_i;\theta)]$ uniformly in $\theta \in \Theta$;
- H7: the log-likelihood is twice continuously differentiable in open neighborhood of θ_0 ;

H8:
$$I_1(\theta_0) = \mathsf{E}_{\theta_0} \left[-\frac{\partial^2 \log f(Y; \theta)}{\partial \theta \, \partial \theta'} \right]$$
 is finite and invertible.

If $\hat{\theta}_n$ is consistent sequence of local maxima, show that the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta_0)$ is $N[0, I_1(\theta_0)^{-1}]$.

40 points 4. Consider the following simultaneous equations model:

$$y = Y\beta + X_1\gamma + u, \qquad (2)$$

$$Y = X_1 \Pi_1 + X_2 \Pi_2 + V, \qquad (3)$$

where y and Y are $T \times 1$ and $T \times G$ matrices of endogenous variables, X_1 and X_2 are $T \times k_1$ and $T \times k_2$ matrices of exogenous variables, β and γ are $G \times 1$ and $k_1 \times 1$ vectors of unknown coefficients, Π_1 and Π_2 are $k_1 \times G$ and $k_2 \times G$ matrices of

unknown coefficients, $u = (u_1, ..., u_T)'$ is a $T \times 1$ vector of random disturbances, $V = [V_1, ..., V_T]'$ is a $T \times G$ matrix of random disturbances,

$$X = [X_1, X_2] \text{ is a } T \times k \text{ full-column rank matrix,}$$
(4)

where $k = k_1 + k_2$, and

u and X are independent, (5)

$$u \sim N[0, \sigma_u^2 I_T]. \tag{6}$$

- (a) Discuss the conditions under which the parameters of equation (2) are identified.
- (b) Suppose we wish to test the hypothesis

$$H_0(\boldsymbol{\beta}_0): \boldsymbol{\beta} = \boldsymbol{\beta}_0. \tag{7}$$

- i. Describe the standard Wald-type test for $H_0(\beta_0)$ based on two-stage-least-least squares, and describe its properties.
- ii. Describe an identification-robust procedure for testing $H_0(\beta_0)$.
- iii. If G = 1, propose an exact confidence region for β ;
- iv. If $G \ge 2$, propose an exact confidence region for β .
- (c) Discuss how the following outcomes can be interpreted:
 - i. the confidence set for β is equal to the whole real line;
 - ii. the confidence set for β is empty
- (d) Discuss the properties of the procedures proposed in the above sub-question if the model for *Y* is in fact

$$Y = X_1 \Pi_1 + X_2 \Pi_2 + X_3 \Pi_3 + V \tag{8}$$

where X_3 is a $T \times k_3$ matrix of fixed explanatory variables.

(e) Describe an exact procedure for testing an hypothesis of the form:

$$H_0: \beta = \beta_0 \text{ and } \gamma = \gamma_0 \tag{9}$$

where β_0 and γ_0 are given values.

- (f) Propose an exact confidence region for γ .
- (g) If the assumption (6) is replaced by

$$u_1,\ldots,u_T\sim\sigma t(2) \tag{10}$$

where t(2) represents the Student *t* distribution with 2 degrees of freedom and σ is an unknown positive constant, propose an exact method for testing $H_0(\beta_0)$.