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Abstract

We use identification-robust methods to assess a New Keynesian Phillips Curve (NKPC)

equation. We focus on the Gali – Gertler [1999. Inflation dynamics: a structural econometric

analysis. Journal of Monetary Economics 44, 195–222] specification, for U.S. and Canadian

data. Two variants of the model are studied: one based on a rational-expectations assumption,

and a modification which uses survey-based data on inflation expectations. The two

specifications exhibit sharp differences concerning: (i) identification difficulties, (ii) backward-

looking behavior, and (iii) price adjustment frequency. Overall, the results provide some

support to the hybrid NKPC for the U.S., whereas the model is not suited to Canada. Our

analysis underscores the need for employing identification-robust inference methods.
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1. Introduction

A standard feature of macroeconomic policy models is an equation describing the
evolution of inflation. Nowadays, this process is typically modelled as a hybrid New
Keynesian Phillips curve (NKPC). This specification results from recent efforts to
model the short-run dynamics of inflation starting from optimization principles; see,
for example, Woodford (2003) and the references therein. In its basic form, the
NKPC stipulates that inflation at time t is a function of expected future inflation and
the current output gap. With its clearly elucidated theoretical foundations, the
NKPC possesses a straightforward structural interpretation and therefore presents,
in principle, a strong theoretical advantage over traditional reduced-from Phillips
curves (which are only statistically justified).

However, given the statistical failure of the basic NKPC formulation when
confronted with data, the curve has since evolved into its more empirically viable
hybrid form. In particular, it was noted that: (i) adding lagged inflation to the model
(hybrid NKPC) corrects the signs of estimated coefficients (see Fuhrer and Moore,
1995; Fuhrer, 1997 and Roberts, 1997), and (ii) using a measure of real marginal cost
derived from a given production function instead of the output gap yields a better
statistical fit according to GMM-based estimates and tests (see, for example, Gali
and Gertler, 1999 and Gali et al., 2001). Yet the question of which production
function (i.e., which marginal cost measure) is empirically preferable is not yet
resolved, as the choice for the marginal cost proxy seems to affect evidence on the
weight of the backward-looking term; see Gagnon and Khan (2005). In addition,
there are different theoretical ways of incorporating backward-looking behavior in
the curve, and they yield different outcomes; see Fuhrer and Moore (1995), Gali and
Gertler (1999) and Eichenbaum and Fisher (2004).1

Discriminating between competing alternatives calls for reliable econometric
methods. Full-information models are typically nonlinear and heavily parame-
trized.2 So, in practice, these models are often estimated by applying standard
limited-information (LI) instrumental-variable (IV) methods to first-order condi-
tions of interest. Indeed, the popularity of NKPC models stems in large part from
studies such as Gali and Gertler (1999) and Gali et al. (2001) who found empirical
support for their version of the curve using the generalized method of moments
(GMM), and the fact that the model is not rejected by Hansen’s J test.

But even as the popularity and usage of the curve has grown, criticisms have been
raised with respect to its empirical identifiability. The main issue is that IV methods
such as GMM are not immune to the presence of weak instruments; see, for example,
Dufour (1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot et al.
(1998), Stock and Wright (2000), Dufour and Jasiak (2001), Stock et al. (2002),
Kleibergen (2002), Khalaf and Kichian (2002, 2005), Dufour and Khalaf (2003), and
Dufour and Taamouti (2005, 2006, 2003a, b). These studies demonstrate that
1For example, Gali and Gertler (1999) appeal to the assumption that a proportion of firms never re-

optimize, but that they set their prices using a rule-of-thumb method; Eichenbaum and Fisher (2004) use

dynamic indexing instead.
2In this literature, some of the parameters are typically calibrated while others are estimated.



ARTICLE IN PRESS

J.-M. Dufour et al. / Journal of Economic Dynamics & Control 30 (2006) 1707–1727 1709
standard asymptotic procedures (which impose identification away without correcting
for local almost-nonidentification) are fundamentally flawed and lead to spurious
overrejections, even with fairly large samples. In particular, the following
fundamental problems do occur: in models which may not be identified over all
the parameter space, (i) usual t-type tests have significance levels that may deviate
arbitrarily from their nominal levels since it is not possible to bound the null
distributions of the test statistic, and (ii) Wald-type confidence intervals (of the form:
estimate � (asymptotic standard error) � (asymptotic critical point)) have
dramatically poor coverage irrespective of their nominal level because they are
bounded by construction; see Dufour (1997).3

To circumvent the difficulties associated with weak instruments, the above cited
recent work on IV-based inference has focused on two main directions (see the
surveys of Dufour, 2003; Stock et al. (2002)): (i) refinements in asymptotic analysis
which hold whether instruments are weak or not (e.g., Staiger and Stock, 1997;
Wang and Zivot, 1998; Stock and Wright, 2000; Kleibergen, 2002; Moreira, 2003b),
and (ii) finite-sample procedures based on proper pivots, i.e. statistics whose null
distributions do not depend on nuisance parameters or can be bounded by nuisance-
parameter-free distributions (boundedly pivotal functions) (Dufour, 1997; Dufour and
Jasiak, 2001; Dufour and Khalaf, 2002; Dufour and Taamouti, 2005, 2006, 2003a,
b). The latter include methods based on Anderson and Rubin’s (1999, AR) pivotal F-
statistic which allow unbounded confidence sets.

Identification difficulties have led to re-examinations of NKPC models, and in
particular of the Gali and Gertler NKPC specification, by several authors. Especially
relevant contributions on this issue include Linde (2001), Ma (2002), Nason and
Smith (2003) and Fuhrer and Olivei (2004). Linde (2001) performs a small-scale
simulation study based on a Gali–Gertler-type model and documents the superiority
of full-information maximum likelihood (FIML) over GMM. In particular, GMM
estimates appear sensitive to parameter calibrations. Ma (2002) applies the
asymptotic methods proposed by Stock and Wright (2000) to the Gali and Gertler’s
NKPC in view of getting confidence sets that account for the presence of weak
instruments. These sets are much too large to be informative, suggesting that the
parameters of the curve are indeed not well-identified. Nason and Smith (2003) study
the identification issue of the NKPC in limited-information contexts analytically,
solving the Phillips curve difference equation. They show that typical GMM
estimations of such curves have parameters that are not identifiable (or nearly so),
and full-information methods (FIML) can make identification easier. Applications
to US data yield GMM estimates that are comparable to the values obtained by Gali
and Gertler (1999). In contrast, their FIML estimates (which the authors feel are
3Poor coverage (which implies that the data is uninformative about the parameter in question) is not

really due to large estimated standard errors, or even to poorly approximated cut-off points. The problems

stem from the method of building the confidence set as an interval which is automatically ‘bounded’. Any

valid method for the construction of confidence sets should allow for possibly unbounded outcomes, when

the admissible set of parameter values is unbounded (as occurs when parameters are not identifiable on a

subset of the parameter space). In this case, a bounded confidence set would inevitably ‘rule out’ plausible

parameter sets, with obvious implications on coverage.
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more reliable) point to a greater role for backward-looking behavior. For Canada,
the authors report that the NKPC is poorly identified, whether GMM or FIML
estimation is used. Finally, Fuhrer and Olivei (2004) consider improved GMM
estimation, where the instrumentation stage takes the constraints implied by the
structure formally into consideration. They demonstrate the superiority of their
approach through a Monte Carlo simulation. In addition, they estimate an inflation
equation using U.S. data, and obtain a large forward-looking component with
conventional GMM, but a much lower value for this parameter with ‘optimal’
GMM and maximum likelihood.

In this paper, we reconsider the problem of estimating inflation dynamics, in view
of recent econometric findings. Our aim is to produce more reliable inference based
on identification-robust tests and confidence sets. A characteristic feature of
identification-robust procedures is they should lead to uninformative (e.g.,
unbounded) confidence sets when the parameters considered are not identified (see
Dufour, 1997). We focus on two types of procedures: the AR procedure and a
method proposed by Kleibergen (2002). The AR procedure is particularly
appropriate from the viewpoint of validating a structural model, because it is
robust not only to weak instruments, but also to missing instruments and more
generally to the formulation of a model for endogenous explanatory variables (see
Dufour, 2003; Dufour and Taamouti, 2005, 2006). A drawback, however, of the AR
procedure comes from the fact that it leads to the inclusion of a potentially large
number of additional regressors (identifying instruments), hence a reduction in
degrees of freedom which can affect test power in finite samples. To assess sensitivity
to this type of effect, we also apply a method proposed by Kleibergen (2002), which
may yield power gains by reducing the number of ‘effective’ regressors (although at
the expense of some robustness).4

Our applications study U.S. and Canadian data using: (i) the benchmark hybrid
NKPC of Gali and Gertler, which uses a rational expectations assumption, and (ii) a
modification to the latter which consists in using survey-based measures of expected
inflation. Our analysis allows one to compare and contrast both variants of the
model; this is relevant because available studies imply that the specification of the
expectation variable matters empirically. For instance, Gali and Gertler (1999)
suggest that, when the model is conditional on labour costs, under rational
expectations, additional lags of inflation are no longer needed. In contrast, Roberts
(2001) argues that those results are sensitive to the specification of labour costs, and
that the need to include additional lags could reflect the fact that expectations are not
rational; see also Roberts (1997, 1998). Our results reveal sharp differences between
the two specifications for U.S. and Canada.

In Section 2, we review the Gali and Gertler’s (1999) NKPC hybrid specification.
In Section 3, we describe the specific models and the methodology used in this paper.
Section 4 discusses our empirical results, and Section 5 concludes. Details on the
data and a formal treatment of the statistical procedures we apply are presented in
Appendices A and B.
4For further discussion of this issue, see Dufour and Taamouti (2003a, b).
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2. Gali and Gertler’s hybrid NKPC model

In Gali and Gertler’s hybrid specification, firms evolve in a monopolistically
competitive environment and cannot adjust their prices at all times. A Calvo-type
assumption is used to represent the fact that a proportion y of the firms do not adjust
their prices in period t. In addition, it is assumed that some firms do not optimize but
use a rule of thumb when setting their prices. The proportion of such firms (referred
to as the backward-looking price-setters) is given by o. In such an environment,
profit-maximization and rational expectations lead to the following hybrid NKPC
equation for inflation ðptÞ:

pt ¼ lst þ gfEtptþ1 þ gbpt�1, (1)

ptþ1 ¼ Etptþ1 þ utþ1, (2)

where

l ¼
ð1� oÞð1� yÞð1� byÞ
yþ o� oyþ oby

, (3)

gf ¼
by

yþ o� oyþ oby
; gb ¼

o
yþ o� oyþ oby

, (4)

Etptþ1 is expected inflation at time t, st represents real marginal costs (expressed as a
percentage deviation with respect to its steady-state value) and ut is unexpected
inflation. The parameter gf determines the forward-looking component of inflation
and gb its backward-looking part; b is the subjective discount rate.

Gali and Gertler rewrite the above NKPC model in terms of orthogonality
conditions. Two different normalizations are used for this purpose.5 The first one
(orthogonality specification (1)) is given by

Etf½fpt � ð1� oÞð1� yÞð1� byÞst � byptþ1 � opt�1�ztg ¼ 0 (5)

where f ¼ ðyþ o� oyþ obyÞ, while the second one (orthogonality specification
(2)) is

Et½ðpt � lst � gfptþ1 � gbpt�1Þzt� ¼ 0. (6)

The vector zt includes variables that are orthogonal to utþ1, allowing for GMM
estimation. Quarterly U.S. data are used, with pt measured by the percentage change
in the GDP deflator, and real marginal costs given by the logarithm of the labour
income share. The instruments include four lags of inflation, labour share,
commodity-price inflation, wage inflation, the long-short interest rate spread, and
output gap (measured by a detrended log GDP).

Gali and Gertler’s estimations yield the following values for ðo, y, bÞ: ð0:27, 0:81,
0:89Þ for specification (1), and ð0:49; 0:83; 0:91Þ for specification (2). When the
subjective discount rate is restricted to one, the estimates are ð0:24; 0:80; 1:00Þ and
ð0:52; 0:84; 1:00Þ, respectively. The implied slopes are all positive and deemed to be
5In Gali and Gertler (1999), the orthogonality conditions are written for the case o ¼ 0; see Gali et al.

(2001) for the general case.
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statistically significant using IV-based asymptotic standard errors, and the fact that
the overidentifying restrictions are not rejected by the J test. Accordingly, Gali and
Gertler conclude that there is good empirical support for the NKPC. Furthermore,
the forward-looking component of inflation is more important than the backward-
looking part (i.e. the estimated value of gf is larger than the one for gb).

However, given the severity of the size distortions induced by weak instruments, it
is important to ascertain that these results are not invalidated by such problems.6 Ma
(2002) uses corrected GMM inference methods developed by Stock and Wright
(2000) to reevaluate the empirical relevance of the NKPC specifications. The
corrected 90% confidence sets (called S-sets) that Ma calculates are very large,
including all parameter values in the interval ½0; 3� for two of the structural
parameters, and ½0; 8� for the third one. Since all parameter combinations derived
from these value ranges are compatible with the model, this suggests that parameters
are weakly identified. We will now reassess the NKPC model using identification-
robust (or weak-instrument robust) methods.
3. Statistical framework and methodology

We consider here two econometric specifications in order to assess Gali and
Gertler’s NKPC. These are given by:

pt ¼ lst þ gfptþ1 þ gbpt�1 þ utþ1; t ¼ 1; . . . ;T , (7)

and

pt ¼ lst þ gf ~ptþ1 þ gbpt�1 þ utþ1; t ¼ 1; . . . ;T , (8)

where ~pt is a survey measure of inflation expectations. These two models differ by
their assumptions on the formation of inflation expectations. In (7), expected
inflation Etptþ1 is proxied by the realized value ptþ1, while in (8) it is replaced by the
survey-based measure ~ptþ1 of expected inflation for ptþ1. It is easy to see that both
approaches raise error-in-variable problems and the possibility of correlation
between explanatory variables and the disturbance term in the two above equations.
Studies such as Roberts (1997, 1998, 2001) have noted that the maintained
specification for how expectations are formed have important implications for the
empirical validity of the curve. That is, additional lags not implied by the NKPC
under rational expectations may be required, even if the model is conditional on
labour costs.

The parameters l, gf , and gb, defined in Eq. (3), are nonlinear transformations of
the ‘deep parameters’ o, b, and y. The statistical details underlying our inference
6For a detailed discussion on weak instruments and their effects (as discussed in the introduction) see

Nelson and Startz (1990a,b), Buse (1992), Choi and Phillips (1992), Maddala and Jeong (1992), Angrist

and Krueger (1994), McManus et al. (1994), Bound et al. (1995), Cragg and Donald (1996), Hall et al.

(1996), Dufour (1997), Staiger and Stock (1997), Wang and Zivot (1998), Zivot et al. (1998), Stock and

Wright (2000), Dufour and Jasiak (2001), Hahn and Hausman (2002, 2003), Kleibergen (2002), Moreira

(2003a, b), Stock et al. (2002), Kleibergen and Zivot (2003) and Wright (2003); several additional papers

are also cited in Dufour (2003) and Stock et al. (2002).
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methodology are presented in Appendix B, where to simplify presentation, we adopt
the following notation: y is the T-dimensional vector of observations on pt, Y is the
T � 2 matrix of observations on st and either of ptþ1 and ~ptþ1, X 1 is the vector of
observations on the inflation lag pt�1, X 2 is the T � k2 matrix of the instruments
(we use 24 instruments, see Section 4) and u is the T-dimensional vector of error
terms ut.

The methodology we consider can be summarized as follows. To obtain a
confidence set with level 1� a for the deep parameters, we invert the F-test presented
in Appendix B associated with the null hypothesis

H0 : o ¼ o0; b ¼ b0; y ¼ y0, (9)

where o0; b0, and y0 are known values. Formally, this implies collecting the values
o0, b0, and y0 that are not rejected by the test (i.e. the values for which the test is not
significant at level a). Taking Eq. (8) as an example, the test under consideration
proceeds as follows (further discussion and references are provided in Appendix B).
1.
 Solve (3)–(4) for the values of l, gf and gb associated with o0, b0, and y0: we
denote these by l0, gf0 and gb0.
2.
 Consider the regression (which we will denote the AR-regression, in reference to
Anderson and Rubin (1949)) of

fpt � l0st � gf0 ~pt � gb0pt�1g on fpt�1 and the instrumentsg. (10)

Under the null hypothesis (specifically (8)–(9)), the coefficients of the latter
regression should be zero. Hence testing for a zero null hypothesis on all response
coefficients in (10) provides a test of (9).
3.
 Compute the standard F-statistic for the exclusion of all regressors, namely,

fpt�1 and the instrumentsg

in the regression (10) (see (B.13) in Appendix B). In this context, the usual
classical regression framework applies, so the latter F-statistic can be compared to
its usual F or w2 cut-off points.

Tests of this type were originally proposed by Anderson and Rubin (1949) for
linear Gaussian simultaneous equations models. The AR approach transforms a
structural equation such as (8) into the regular regression framework as in (10), for
which standard finite-sample and asymptotic distributional theory applies. The
required transformation is extremely simple, despite the complexity of the model
under test. Indeed, the basic test we use for inference on o0, b0, and y0 differs from a
standard IV-based Wald or t-type one by the fact that it avoids directly estimating
the structural equation in (8), which faces identification difficulties. In contrast, the
AR-regression (10) satisfies the usual classical regression assumptions (because no
‘endogenous’ variables appear on its right-hand side). Whereas any statistical
analysis of (8) requires identification constraints, these are no longer needed for
inference on the regression (10). As shown more rigorously in Appendix B, the AR-
regression provides information on the structural parameters because it is linked to
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the reduced form associated with the structural Eq. (8). By identification-robust, we
mean here that the F-test is valid whether the model is identified or not.7

Transforming the test problem to the AR-regression framework however comes at
some cost: the identification-robust F-test requires assessing (in regression (10)) the
exclusion of pt�1 and the 24 available instruments (25 constraints), even though the
number of structural parameters under test is only 3. Instrument abundance thus
leads to degrees-of-freedom losses with obvious consequences on test power. It is
possible to characterize what an ‘optimal’ instrument set looks like from the
viewpoint of maximizing test power: up to a nonsingular transformation, the latter
(say Z̄) should be the mean of the endogenous explanatory variables in the model or,
which is equivalent,

X 2 � fthe coefficient of X 2 in the first stage regression, assumed knowng,

where X 2 (as defined above) refers to the matrix of available instruments; see Dufour
and Taamouti (2003b) and Appendix B of this paper. Here, the first stage regression
is the regression of the left-hand side endogenous variables in (8) (marginal cost
and expected inflation) on the included exogenous variable (the inflation lag)
and X 2. More precisely, this involves applying steps 1–3 above after replacing the
instruments by Z̄, whose dimension is T � 2. So, the optimal identification-robust F-
test requires assessing (in the regression (10)) the exclusion of pt�1 and the two
optimal instruments (3 constraints); recall that the number of structural parameters
under test is indeed 3. This provides optimal information reduction, which improves
the power of the test (and thereby may tighten the confidence sets based on these
tests).

In practice, however, the coefficient of X 2 in the first-stage regression (P2 in
Appendix B) is not known, and estimates of this parameter must be ‘plugged in’,
which of course only leads to an ‘approximately optimal’ procedure. As described in
Dufour (2003), many procedures that aim at being identification-robust as well as
improving the AR procedure from the viewpoint of power rely on different choices
of Z̄. In particular, if a constrained OLS estimator imposing the structure underlying
(8) is used [P̂

0

2 in Eq. (B.15)], then the associated procedure yields Kleibergen’s
(2002) K-test.8 In other words, Kleibergen’s (2002) test obtains on applying steps 1–3
above, replacing the instruments by

Z̄K ¼ X 2P̂
0

2.
7We emphasize in Appendix B that the latter test will be exactly size correct if we can strictly condition

on the regressors and particularly the instruments for statistical analysis; weakly exogenous regressors in

our dynamic model with instruments orthogonal to the regression error terms are not in accord with the

latter assumption. Nevertheless, the tests are still identification-robust. An exact test can still be devised for

the NKPC model at hand despite its dynamic econometric specification if one is willing to consider

strongly exogenous instruments.
8To correct for plug-in estimation effects (i.e. for estimating P2), Dufour and Jasiak (2001) and Dufour

and Taamouti (2003a, b) recommend split sample estimation techniques, where the first sub-sample is used

to estimate P2 and the second sub-sample is used to run the optimal AR-test based on the latter estimate.

Results applying these versions of the tests are available from the authors upon request.
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To avoid confusion, the tests based on X 2 and Z̄K are denoted by AR and AR-K,
respectively. This is the alternative ‘parsimonious identification-robust’ procedure
we shall consider here.

Finally, we invert these tests to get confidence sets as follows: using a grid search
over the economically meaningful set of values for o, b, and y, we sweep the
economically relevant choices for o0, b0, and y0.

9 For each parameter combina-
tion considered, we compute the statistics AR and AR-K as described above
and their respective p-values. The parameter vectors for which the p-values are
greater than the level a constitute a confidence set with level 1� a. Since every
choice of o0, b0, and y0 entails (using (3)) a choice for l, gf and gb, this procedure
also yields conformable confidence sets for the latter parameters. These confidence
sets reflect the structure, and obtain without further computations, although l, gf
and gb are transformations of the deep parameters. Therein lies a significant
advantage in using our approach as an alternative to standard nonlinear Wald-based
techniques.

To conclude, it is worth to emphasize two points. First, if the confidence set
obtained by inverting an AR-type test is empty, i.e. if no economically acceptable
value of the model deep parameters is upheld by the data, then we can infer that the
model is rejected at the chosen significance level. We thus see that the procedure used
here may be seen as an identification-robust alternative to the standard GMM-based
J test. In the same vein, utterly uninformative (too wide) confidence sets allow one to
assess model fit, since unbounded confidence sets do occur under identification
difficulties (see the discussion in Dufour (2003)). Our procedure (which performs, for
practical purposes, the same specification checks as a J-type test) has a clear ‘built-in’
advantage over GMM-based t-type confidence intervals, backed by a non-significant
J test.10

Our procedure offers another important advantage not shared by the latter
standard approach. So far, we have considered the estimation and test problem given
a specific significance (or confidence) level a. Alternatively, the p-value associated
with the above defined tests, which provides a formal specification check, can be used
to assess the empirical fit of the model. In other words, the values (uniqueness is not
granted) of o0, b0, and y0 that lead to the largest p-value formally yield the set of
‘least rejected’ models, i.e. models that are most compatible with the data.11 In
practice, analyzing the economic information content of these least rejected models
(associated with the least rejected ‘deep parameter’ combinations) provides decisive
and very useful goodness-of-fit checks.
9We allow the range (0, 1) as the admissible space for each of o, y, and b. The values are varied with

increments of 0.03 for o and y, and by 0.01 for b. The increment of 0.03 was chosen for the first two

parameters (rather than 0.01) to minimize the computational burden.
10Indeed, if the AR confidence set with level 1� a is empty, then the usual LIML over-identification test

statistic will exceed a specific bounds-based identification-robust a-level critical point, i.e. the associated

over-identification test is conclusively significant at level a.
11This method underlies the principles of Hodges – Lehmann estimators; see Hodges and Lehmann

(1963, 1983). Least-rejected values may thus be interpreted as ‘point estimates’.
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4. Empirical results

We applied the above-defined inference methods to the hybrid NKPC models in
(7) and (8) for both U.S. and Canadian data. One difference between our
specifications and those of Gali and Gertler is that we use a real-time output-gap
measure in the set of instruments instead of a gap detrended using the full sample.
The latter measure does not appear to be an appropriate instrument since, when the
full sample is used, lagged values of the gap are, by construction, related to future
information. To avoid this, we proceed iteratively: to obtain the value of the gap at
time t, we detrend GDP with data ending in t. The sample is then extended by one
more observation and the trend is reestimated. This is used to detrend GDP and
yields a value for the gap at time tþ 1. This process is repeated until the end of the
sample. In this fashion, the gap measure at time t does not use information beyond
that period and can therefore be used as a valid instrument. We also considered a
quadratic trend for this purpose.12 The data end in 1997Q4 for the U.S., and in
2000Q4 for Canada.

Regarding survey expectations, the Federal Reserve Bank of Philadelphia
publishes quarterly mean forecasts of the next quarter’s U.S. GDP implicit price
deflator. We first-difference this series to obtain our inflation-expectations series for
the U.S.13 In the case of Canada, the survey-based inflation expectations series were
obtained from Canada’s Conference Board Survey; further details on the Canadian
data appear in Appendix A. For the remaining variables, other than the output gap,
we use the Gali and Gertler data and instrument set for the U.S., and the
corresponding variables in the case of Canada. Because of the expectations variables
in the data set, our samples start in 1970Q1.

We first apply the AR test to the U.S. data, and for Eq. (7), to assess the Gali and
Gertler (1999) reported estimates. Specifically, we test whether o, y, and b are
ð0:27; 0:81; 0:89Þ or (0.49, 0.83, 0.91), which correspond to those authors’ estimates
based on their orthogonality specifications (1) and (2), respectively. We find all tests
to be significant at conventional levels, so that their estimated parameter values are
rejected. We then ask whether, for the same instrument set, there exists a value of the
parameter vector for which the hybrid NKPC is not rejected. Interestingly, we find
some dramatically different results depending on whether (7) or (8) is used.

For the U.S. rational expectation solution, we find a bounded but fairly large
confidence set. This entails that there is a multitude of different parameter
combinations which are compatible with the econometric model tested, although
the set is much smaller than the S-sets constructed by Ma.14 However, for the model
using survey expectations the confidence set is empty (at the 95% level). Thus, not a
single parameter value combination is compatible with this particular econometric
model, implying that with survey expectations, the model is not appropriate. With
12We repeated our estimations using a cubically detrended real-time gap measure, as well the Christiano

– Fitzgerald one-sided band-pass filter, and obtained qualitatively similar results.
13Source: http://www.phil.frb.org/econ/spf/index.html.
14There is a slight difference between our two instrument sets: Ma’s set includes a constant and has no

fourth lag for any of the variables in levels.

http://www.phil.frb.org/econ/spf/index.html
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Table 1

Anderson – Rubin tests with rational expectations

Test type Max p-value Deep parameters Reduced-form parameters Freq.

ðo; y; bÞ ðl; gf ; gbÞ

Unrestricted model

AR U.S. 0.2771 (0.40, 0.64, 0.96) (0.08, 0.60, 0.39) 2.78

Canada – – – –

AR-K U.S. 0.9993 (0.40, 0.61, 0.98) (0.09, 0.59, 0.40) 2.56

Canada 0.9990 (0.01, 0.37, 0.21) (1.53, 0.21, 0.03) 1.59

b ¼ 0:99
AR U.S. 0.2765 (0.37, 0.64, 0.99) (0.08, 0.63, 0.37) 2.78

Canada – – – –

AR-K U.S. 0.9987 (0.37, 0.64, 0.99) (0.08, 0.63, 0.37) 2.78

Canada 0.2900 (0.01, 0.10, 0.99) (7.30, 0.91, 0.09) 1.11

Note: AR is the Anderson – Rubin test and AR-K refers to the Kleibergen test. Freq. is the average

frequency of price adjustment, measured in quarters.
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regards to the Canadian data, we find that the outcomes are reversed. Thus, it is the
model with rational expectations that generates the empty confidence set, while the
specification using survey data yields the non-empty one. The latter is so small that
there are only some parameter value combinations for which the model is
statistically valid.

Along with the identification-robust confidence sets, one of the great advantages
of using the Anderson – Rubin method is that it yields the parameter combination
that is least rejected, or, alternatively, that has the highest p-value. Formally, as
explained in the previous section, this point estimate corresponds to the so-called
Hodges–Lehmann estimate and can be compared with point estimates obtained
using more conventional estimation methods (such as GMM). We report this
estimate for the U.S. and Canada in the upper panels of Tables 1 and 2, respectively.
From here, we can see that, under rational expectations, the values of the deep
parameters ðo, y, bÞ that correspond to the maximal p-value for the U.S. is given by
ð0:40, 0:64, 0:96Þ. These translate into a value of 0.6 for the coefficient of the forward-
looking component on inflation ðgf Þ, and 0.39 for the coefficient of the backward-
looking component ðgbÞ. Furthermore, the coefficient on the marginal cost variable is
0.08, and the average frequency of price adjustment is 2.78 quarters.

Based on the Hodges – Lehmann estimates, the findings provide support for the
optimization-based Phillips curve, and the notion that the forward-looking
component of the U.S. inflation process is more important than its backward-
looking part. In addition, the estimate for the average frequency of price adjustment
is fairly close to the value of 1.8 obtained based on micro data (see, for example, Bils
and Klenow, 2004).15 On the other hand, the graphs in the lower panel of Fig. 1
provide a qualification to the above statement.
15Gali and Gertler report average price adjustment frequencies of roughly 5 quarters.



ARTICLE IN PRESS

Table 2

Anderson – Rubin tests with survey expectations

Test type Max p-value Deep parameters Reduced-form parameters Freq.

ðo; y; bÞ ðl; gf ; gbÞ

Unrestricted model

AR U.S. – – – –

Canada 0.1009 (0.01, 0.97, 0.89) (0.00, 0.88, 0.01) 33.33

AR-K U.S. 0.9983 (0.01, 0.61, 0.64) (0.38, 0.63, 0.02) 2.56

Canada 0.0890 (0.01, 0.97, 0.90) (0.00, 0.89, 0.01) 33.33

b ¼ 0:99
AR U.S. – – – –

Canada 0.0562 (0.01, 0.97, 0.99) (0.00, 0.98, 0.01) 33.33

AR-K U.S. 0.6057 (0.52, 0.22, 0.99) (0.40, 0.29, 0.70) 1.28

Canada – – – –

Note: AR is the Anderson – Rubin test and AR-K refers to the Kleibergen test. Freq. is the average

frequency of price adjustment, measured in quarters.
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The graph in the bottom panel, on the left, depicts the 95% (solid line, p-value
¼ 0:05) and 90% (dashed line, p-value ¼ 0:10) confidence sets based on the AR test,
and for the case where the subjective discount parameter is constrained to lie
between 0.95 and 0.99. An ‘X’ marks the spot corresponding to the highest p-value
obtained (0.2797). Immediately, three features can be noticed: (i) the sets of
parameter values that the test does not reject at the 5 and 10% levels are fairly large,
(ii) within these sets, there is more than one o value that corresponds to a given y,
and vice versa, and (iii) the parameter combination that yields the highest p-value is
very close to points that have a p-value of 0.10 only. In other words, even when b is
constrained quite tightly, the uncertainty regarding the estimated values of the other
parameters is relatively high. This is seen more easily in the adjacent graph which
depicts the values corresponding to the 95% confidence set in the gf and gb space.
Note, in particular, that a value of 0.60 for the backward-looking component of
inflation, and 0.37 for the forward-looking part is as likely to be obtained as a value
of 0.90 and 0.10 for the forward and backward-looking components, respectively.

Turning now to Canadian data, recall that the model with rational expectations is not
compatible with the data, but that the one with survey expectations does yield a non-
empty set. The results corresponding to the highest p-value for the latter are reported in
Table 2. In this case, the maximal p-value is 0.1009 while the deep parameters are
ð0:01; 0:97; 0:89Þ. Based on the fact that the proportion of firms that follow a rule-of-
thumb is practically zero (o ¼ 0:01), we would conclude that a purely forward-looking
model is applicable to Canada. However, a look at the reduced-form parameters and the
average frequency of price adjustment indicate that the model is economically not
plausible. This is the case even if b is constrained to 0.99 in the estimation.16
16For this reason, and because all of the admissible o values in the AR-based confidence sets equal 0.01,

no figures are provided for Canada.
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Results based on Kleibergen’s statistic are also reported in Tables 1 and 2. As for
the AR tests, two sets of outcomes are tabulated for each country: the parameter
values that yield the highest test p-value for the unrestricted model appear in the
upper panel, while the lower one shows the corresponding elements when b is
constrained to 0.99.

Let us first examine the results for the U.S. with the rational expectations model.
When Z̄K is used as the instrument set, the model is least rejected for the parameter
combination (0.40, 0.61, 0.98), and the p-value is 0.9993. These values are extremely
close to those reported for the corresponding restricted estimation (with b
constrained to 0.99) case, and also, to those of the AR tests.

With the model based on survey expectations (Table 2), although the AR test
yields an empty confidence set for the U.S., the test that corresponds to Kleibergen’s
K-test (the AR-K test) yields a least-rejected parameter combination that suggests
strongly forward-looking behaviour (gf ¼ 0:63, gb ¼ 0:02). In addition, when the
subjective discount rate is constrained to 0.99, the AR-K test now points to a much
more important backward-looking component for inflation.

Our findings are somewhat similar with Canadian data. Although the AR-K test
yields outcomes similar to those of the AR test for the unrestricted model with
survey expectations, with rational expectations, the AR-K yields parameter values
that suggest a less important forward-looking role in inflation. In addition, the
estimate for the average frequency of price adjustment is 1.6, very much in line with
micro data (as in Bils and Klenow, 2004). These results are nevertheless difficult to
reconcile with the value for l, which is essentially zero. In addition, once the
subjective discount rate parameter is constrained to 0.99, the conclusions on the
rational expectations specification from the AR-K test point to a much more
important forward-looking component of inflation (gf ¼ 0:91, gb ¼ 0:09). The
unusual feature in this case is the value of the coefficient on the marginal cost
variable, l, which stands at 7.30.

Figs. 1 and 2 present U.S. results for the AR-K test for the case where b is
constrained to fall between 0.95 and 0.99. Under rational expectations (Fig.1), the
confidence set based on inverting the AR-K test is larger than that based on the AR
but results are in line with each other, in the sense that the 95% confidence sets are
more skewed towards higher gf than gb. Turning to Fig. 2, we find that the AR-K test
produces strong support for a larger backward-looking component to inflation.

Taken collectively, the results in this section point to problems of weak
identification in these models. Nevertheless, we find that there is some support for
the hybrid NKPC for the U.S., whereas the model is not suited to Canada.
5. Conclusion

In this paper we used finite-sample methods to test the empirical relevance of Gali
and Gertler’s (1999) NKPC equations, using AR tests as well as Kleibergen’s more
parsimonious procedure. We focused on the Gali and Gertler’s (1999) specification,
for both U.S. and Canadian data. Two variants of the model were studied: one based
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on a rational-expectations assumption, and a modification to the latter which
consists in using survey data on inflation expectations. In the U.S. case, Gali and
Gertler’s (1999) original data set were used except for the output gap measure and
survey expectations where applicable.

First, we found some evidence of identification difficulty. Nevertheless, the
maximal p-value arguments point out those parameter values for which the model is
least rejected – a very useful feature of our proposed identification-robust
techniques. Second, we found support for Gali and Gertler’s hybrid NKPC
specification with rational expectations for the U.S. Third, neither model was found
to be well suited to describe inflation dynamics in Canada. Fourth, we found that,
for the cases where the Anderson–Rubin test yields an empty confidence set, the AR-
K procedure leads to conflicting results for the restricted and unrestricted models.

These results underscore the need for employing identification-robust inference in
the estimation of expectations-based dynamic macroeconomic relations.
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Appendix A. Data description for Canada

The inflation expectations series is obtained from the Conference Board of Canada
survey. Each quarter, participants are asked to forecast the annual average (GDP-
deflator) inflation rate for the current year. Let us denote ~pa

1, ~p
a
2, ~p

a
3, and ~pa

4, the
annual average inflation forecasts made in quarters 1, 2, 3, and 4 of a given year,
respectively. Clearly, forecasts that are made in the second, third, and fourth
quarters are likely to integrate realized (and observed) inflation in quarters 1, 1 and
2, and 1, 2 and 3, respectively.

To obtain a ‘pure’ quarterly expectations series, we proceed as follows: First,
denote the forecasted quarterly inflation rate in quarters 1 to 4 as ~pq

1, ~p
q
2, ~p

q
3, and ~p

q
4,
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respectively. Similarly, let pq
1, pq

2, pq
3 be the realized quarterly inflation rates in

quarters 1, 2, and 3, respectively. Then, the forecasted quarterly inflation rates are
calculated as follows:

~pq
1 ¼ ~pa

1=4,

~pq
2 ¼ ð ~p

a
2 � pq

1Þ=3,

~pq
3 ¼ ð ~p

a
3 � pq

1 � pq
2Þ=2,

~pq
4 ¼ ð ~p

a
4 � pq

1 � pq
2 � pq

3Þ.

The remaining data are quarterly time series from Statistics Canada’s database.
Any monthly data are converted to quarterly frequency.

Output gap is the deviation of real GDP (yt ¼ ln Y t) from its steady state, approxi-
mated by a quadratic trend: ŷ ¼ 100ðyt � ȳtÞ, where Y t ¼ I56001� I56013� I56018.

Price inflation is the quarterly growth rate of the total GDP deflator:
pt ¼ 100ðlnPt � lnPt�1Þ and Pt ¼ D15612.
Wage inflation is the quarterly growth rate of compensation of employees:

wt ¼ 100ðlnW t � lnW t�1Þ, where W t ¼ D17023=Nt.
Nt ¼ LFSA201 for 1970:1–1975:4 and Nt ¼ D980595 for 1976:1–2000:4.
Labour income share is the ratio of total compensation and nominal GDP:

lst ¼ lnSt, and st ¼ 100ðlst � sÞ, the labour income share in deviation from its
steady-state, where s ¼ lnS;S ¼

PT
t lnðStÞ=T and St ¼ ðD17023�D17001Þ=

ðD15612 � Y tÞ.
Average real marginal costs for a Cobb– Douglas function: rmc

avg
t ¼ st.
Appendix B. The AR test and related procedures

Consider the following structural equation:

y ¼ Ydþ X 1kþ u, (B.1)

where y is a T � 1 dependent variable, Y is a T �m matrix of endogenous variables,
X 1 is a T � k1 matrix of exogenous variables, and u is an error term that satisfies
standard regularity conditions typical of IV regressions; see Dufour and Jasiak
(2001). In our context (see Section 3), y is the T-dimensional vector of observations
on pt, Y is the T � 2 matrix of observations on st and ~ptþ1 (or ptþ1, depending on the
context), X 1 is the vector of observations on the inflation lag pt�1, X 2 is the T � k2

matrix of the instruments, and u is the T-dimensional vector of error terms ut.
Suppose that the reduced form associated with the right-hand side endogenous

regressors is

Y ¼ X 1P1 þ X 2P2 þ V , (B.2)

where V is an T �m matrix of error terms assumed to be cross-correlated and
correlated with u, and X 2 is the matrix of available instruments.17 In this case, the
17In Dufour and Taamouti (2006) and Dufour (2003), we stress that: (i) linearity of the latter reduced

form is strictly not necessary; (ii) further exogenous regressors (‘excluded’ instruments) may enter into the
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reduced form associated with (B.1) is

y ¼ X 1p1 þ X 2p2 þ uþ Vd, ðB:3Þ

p1 ¼ P1dþ k; p2 ¼ P2d. ðB:4Þ

Identification constraints follow from (B.4) and amount to the rank condition

rankðP2Þ ¼ m. (B.5)

Consider hypotheses of the form

H0 : d ¼ d0. (B.6)

In this case, the transformed model

y� Yd0 ¼ Y ðd� d0Þ þ X 1kþ u

has reduced form

y� Yd0 ¼ X 1½P1ðd� d0Þ þ k� þ X 2½P2ðd� d0Þ� þ uþ V ðd� d0Þ. (B.7)

In view of this, the AR test assesses the exclusion of X 2 (of size T � k2) in the
regression of y� Yd0 on X 1 and X 2, which can be conducted using a standard F-
test. Let X ¼ ðX 1; X 2Þ, and define

M ¼ I � X ðX 0X Þ�1X 0; M1 ¼ I � X 1ðX
0
1X 1Þ

�1X 01.

The statistic then takes the form

ARðd0Þ ¼
ðy� Yd0Þ

0
ðM1 �MÞðy� Yd0Þ=k2

ðy� Yd0Þ
0Mðy� Yd0Þ=ðT � k1 � k2Þ

. (B.8)

Under the null hypothesis, assuming strong exogeneity and identically, indepen-
dently distributed (i.i.d.) normal errors,

ARðd0Þ�F ðk2; T � k1 � k2Þ. (B.9)

Following the usual classical regression analysis, the latter strong hypotheses on the
error terms can be relaxed so that, under standard regularity conditions,

k2ARðd0Þ �
asy

w2ðk2Þ. (B.10)

It is important to emphasize that identification constraints do not intervene. In other
words (B.9) or (B.10) hold whether (B.5) is verified or not; this is what ‘identification
robustness’ usually means. The test can be readily extended to accommodate
additional constraints on the coefficients of (the full vector or a any subset of) the X 1

variables. For example, the hypothesis

H0 : d ¼ d0; k ¼ k0, (B.11)
(footnote continued)

equation in addition to the instrument set. To present the test in its simplest form, we maintain the

standard linear form (B.2) and refer the reader to latter references for discussion of the more general

setting. Note that the assumptions regarding the reduced form for Y do not affect the actual

implementation of the test, so our simplified presentation does not lack generality for practical purposes.
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can be assessed in the context of the transformed regression

y� Yd0 � X 1k0 ¼ X 1½P1ðd� d0Þ þ ðk� k0Þg

þ X 2½P2ðd� d0Þ� þ uþ V ðd� d0Þ ðB:12Þ

which leads to the following F-statistic

ARðd0; k0Þ ¼
ðy� Yd0 � X 1k0Þ

0
ðI �MÞðy� Yd0 � X 1k0Þ=ðk1 þ k2Þ

ðy� Yd0 � X 1k0Þ
0Mðy� Yd0 � X 1k0Þ=ðT � k1 � k2Þ

. (B.13)

While the test in its original form was derived for the case where the first-stage
regression is linear, we re-emphasize that it is in fact robust to: (i) the specification of
the model for Y, and (ii) excluded instruments; in other words, the test is valid
regardless of whether the first-stage regression is linear, and whether the matrix X 2

includes all available instruments. As argued in Dufour (2003), since one is never
sure that all instruments have been accounted for, the latter property is quite
important. Most importantly, this test (and several variants discussed in Dufour,
2003) is the only truly pivotal statistic whose properties in finite samples are robust
to the quality of instruments.

Note that exactness strictly requires that we can condition on X (i.e. we can take X

as fixed for statistical analysis). This holds particularly for the instruments. In the
presence of weakly exogenous regressors, the test remains identification-robust. The
intuition underlying this result is the following: conducting the test via the Anderson
– Rubin regressions (B.7) and (B.12) (which constitute statistical reduced forms) easily
transforms the test problem from the IV-regression (which requires (B.5)) to the
classical linear regression statistical framework (which does not require (B.5)). This
provides an attractive solution to identification difficulties, a property not shared by
IV-based Wald statistics nor GMM-based J-tests.

Despite the latter desirable statistical properties, the test as presented above
provides no guidance for practitioners regarding the choice of instruments. In
addition, simulation studies reported in the above-cited references show that the
power of AR-type tests may be affected by the number of instruments. To see this,
consider the case of (B.1)–(B.6): here, the AR test requires assessing (in the
regression of y� Yd0 on X 1 and X 2) the exclusion of the T � k2 variables in X 2,
even though the number of structural parameters under test is m (the structural
parameter under test d is m� 1). On recalling that identification entails k2Xm, we
see that over-identification (or alternatively, the availability of more instruments)
leads to degrees-of-freedom losses with obvious implication on power. To
circumvent this problem, an optimal instrument (in the sense that it yields a point-

optimal test) is given by

Z̄ ¼ X 2P2,

where P2 is the coefficient of X 2 in the first-stage regression, i.e. the regression of Y

on X 1 and X 2; see Dufour and Taamouti (2003b). Formally, this implies applying
(B.9) or (B.13), replacing X 2 by Z̄ (observe that X 2 intervene in these statistics via
M ¼ I � X ðX 0X Þ�1X 0, where X ¼ ðX 1; X 2Þ).
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Clearly, the latter optimal instrument involves information reduction, because the
associated AR-test amounts to testing because the exclusion of the T �m variables
in Z̄, which preserves available degrees-of-freedom even if the model is highly over-
identified. In other words, the optimal test can reflect the informational content of all
available instruments with no statistical costs.

Unfortunately, P2 is unknown so the approximate optimal instruments need to be
estimated, with obvious implications on feasibility and exactness. As noted in
Dufour (2003), if the OLS estimator

P̂2 ¼ ðX
0
2M1X 2Þ

�1X 02M1Y (B.14)

of P2 in the unrestricted reduced form multivariate regression (B.2) is used in the
construction of Z̄, then the associated statistic coincides with the LM criterion
defined by Wang and Zivot (1998). In addition, the K-statistic of Kleibergen (2002)
may be interpreted as based on an approximation of the optimal instrument (see
Dufour and Khalaf (2003)). In this case, P2 is replaced by its constrained reduced
form OLS estimates imposing the structural identification condition (B.5):

P̂
0

2 ¼ P̂2 � ðX
0
2M1X 2Þ

�1X 02M1½y� Yd0�
½y� Yd0�0MY

½y� Yd0�0M½y� Yd0�
. (B.15)

Wang and Zivot (1998) show that the distribution of the LM statistic is bounded by
the w2ðk2Þ distribution; Kleibergen (2002) shows that a w2ðmÞ cut-off point is
asymptotically identification-robust for the K-statistic. To obtain an F ðm; :Þ or w2ðmÞ
cut-off point for both statistics correcting for plug-in effects, split sample methods
(where the first sub-sample is used to estimate P2 and the second to run the AR-test
based on the latter estimate) may also be exploited; see Dufour and Jasiak (2001) and
Dufour and Taamouti (2003b).
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