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West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 6071; FAX: (1) 514 398 4800; email: jean-

marie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com
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ABSTRACT

Fieller-type methods are proposed for set inference on the generalized entropy (GE) family of

inequality indices. This family satisfies a set of key axiomatic principles and is widely used in

practice. We study the general comparison problem of testing differences between indices, with

independent or dependent samples. Solutions are analytically tractable and cover tests for any

given value of the difference - i.e. not just zero - allowing the construction of confidence sets

through test inversion. These sets are robust to the fact that GE indices involve possibly weakly

identified parameter ratios. Simulation results illustrate the superiority of our solutions relative

to available counterparts, including simulation-based permutation methods. Improvements are

especially notable for indices that put more weight on the right tail of the distribution. Proposed

methods are applied to study economic convergence across U.S. states and non-OECD countries.

We document the fragility of decisions that rely on traditional interpretations of - significant or

insignificant - comparisons when the tested differences can be weakly identified. With reference

to the growth literature which typically uses the variance of log per-capita income to measure

dispersion, results confirm the importance of accounting for micro-founded axioms and shed new

light on enduring controversies surrounding convergence.

Keywords: inequality; generalized entropy; two samples; Fieller; identification-robust; economic

convergence; per capita income.
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1 Introduction

Economic inequality can be broadly defined in terms of the distribution of economic vari-

ables, which include income (predominantly), and other variables such as consumption or health.

Inequality can be measured in several ways, most of which are justified statistically as well as

through theoretical axiomatic approaches. In this context, size-correct statistical inference is an

enduring challenge. One reason is that the underlying distributions often have thick tails, which

contaminate standard asymptotic and bootstrap-based procedures (Davidson and Flachaire, 2007;

Cowell and Flachaire, 2007). Another reason is that two different distributions can yield equal

measures, which complicates comparisons (Dufour et al., 2019).

An important additional difficulty is that common inequality measures – such as the general-

ized entropy (GE) and Gini indices – involve transformations of parameters (Cowell and Flachaire,

2015). Formally, denote by X the random variable with a typical realization representing say the

income of a randomly chosen individual in the population, and let FX refer to the CDF of X . Given

a predetermined parameter – denoted γ – that characterizes the sensitivity to changes over different

parts of the income distribution, the GE measure – denoted GEγ – can be defined as a function of

the ratio of two particular moments of FX : the mean µX = EF(X) and νX(γ) = EF(X
γ).1 Such

nonlinear forms may easily be ill-conditioned or poorly identified. The first objective of this paper

is to underscore and address resulting inference problems. Identification broadly refers to our abil-

ity to recover objects of interest from available models and data (Dufour and Hsiao, 2008). Despite

a sizeable literature on inequality, methods that take into account the irregularities underscored in

the weak identification literature appear to be missing in this context.2

More to the point from the index comparison perspective, most available approaches for this

purpose focus on significance tests. The second objective of this paper is to document the fragility

of decisions relying on traditional interpretations of – significant or insignificant – test results,

when the difference under test can be weakly identified. In particular, when a zero difference

cannot be rejected, we show that because of the definition of conventional inequality indices, one

may also not be able to refute a large spectrum of possible values of this difference. From a policy

perspective, this indicates that available samples are uninformative on inequality changes, which

stands in sharp contrast to a no-change conclusion.

The third objective is to propose tractable identification-robust confidence sets for inequality

indices – in particular, for differences between such indices – which require the same basic inputs

1This definiton implies that GEγ is more sensitive to differences in the top (bottom) tail with more positive (nega-

tive) γ .
2See e.g. Dufour (1997), Andrews and Cheng (2013), Kleibergen (2005), Andrews and Mikusheva (2015),

Beaulieu et al. (2013), Bertanha and Moreira (2016), and references therein; see also Bahadur and Savage (1956)

and Gleser and Hwang (1987).
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as their standard counterparts. Whereas usual companion variances and covariances as well as crit-

ical values need to be computed, the alternative test statistics are formed and inverted analytically

into confidence sets that will reflect the underlying identification status.

The fourth objective is to discuss challenges for empirical researchers and policy-makers in

light of the above observations. We study evidence on economic convergence; see e.g. Romer

(1994) for a historical critical perspective. We show that conflict in test decisions and uninforma-

tive confidence sets cannot be ruled out with standard measures and data sets. To the best of our

knowledge, this problem and our proposed solution have escaped formal notice.

Indeed, the literature on statistical inference for inequality measures is relatively recent; see

Cowell and Flachaire (2015) for a comprehensive survey. In particular, the standard bootstrap is

known to fail, and alternative methods remain scarce. For testing the equality of two inequality

measures from independent samples, Dufour et al. (2019) suggest a permutational approach for

the two-sample problem which outperforms other asymptotic and bootstrap methods available in

the literature. However, these results are limited to testing the equality of two inequality measures

and do not provide a way of making inference on a possibly non-zero difference nor building a

confidence interval on the difference.

In the present paper, we propose Fieller-type methods for set inference on the GE family of

inequality indices. This family satisfies a set of key axiomatic principles and is widely used in

practice.3 We study the general comparison problem of testing any possibly non-zero difference

between measures, with either independent or dependent samples. Moving from testing a zero

difference to assessing the size of the difference is much more informative from both statistical

and economic viewpoints, including potential policy recommendations.

The fact that inequality measures in general, and those considered in this paper in particular,

can be expressed as ratios of moments or ratios of functions of moments, provides a strong moti-

vation for our work since Fieller-type methods are typically used for inference on ratios. Fieller’s

original solution for the means of two independent normal random variables was extended to multi-

variate normals (Bennett, 1959), general exponential (Cox, 1967) and linear (Zerbe, 1978; Dufour,

1997) regression models, dynamic models with possibly persistent covariates (Bernard et al., 2007,

2019) and for simultaneous inference on multiple ratios (Bolduc et al., 2010). For a good review

of inference on ratios, see Franz (2007).

On the GE class of inequality indices, this paper makes the following contributions. First,

we provide analytical and tractable solutions for proposed confidence sets. Second, we show in a

simulation study that the proposed solutions are more reliable than Delta counterparts. Third, we

show that our approach outperforms most simulation-based alternatives including the permutation

3These include scale invariance, the Pigou-Dalton transfer, the symmetry and the Dalton population principle. It is

also additively decomposable. See Cowell (2000) for a detailed discussion on these and other properties of indices.
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test of Dufour et al. (2019). Fourth, our solution covers tests for any given value of the difference

[i.e. not just zero, in contrast with Dufour et al. (2019)], allowing the construction of confidence

sets through test inversion. Fifth, we provide useful empirical evidence supporting the seemingly

counter-intuitive bounds that Fieller-type methods can produce.

Key simulations results illustrate the superiority of Fieller-type methods across the board: (1)

the improved level control (over the Delta method) is especially notable for indices that put more

weight on the right tail of the distribution i.e. as γ increases; (2) size improvements preserve power;

(3) results are robust to different assumptions on the shape of the null distributions; (4) tests based

on the Fieller-type method outperform available permutation tests when the distributions under the

null hypothesis are different. A permutational approach is not available (to date) for the general

problem we consider here. Overall, while irregularities arising from the right tail have long been

documented, we find that left-tail irregularities are equally important in explaining the failure of

standard inference methods for inequality measures.

Our empirical study on growth demonstrates the practical relevance of these theoretical re-

sults. Using per-capita income data for 48 U.S. states, we analyze the convergence hypothesis by

comparing the inequality levels between 1946 and 2016. In contrast to the bulk of this literature,

we depart from just testing and build confidence sets to document the economic and policy sig-

nificance of statistical decisions. The empirical literature on growth relies on the variance of log

incomes as a measure of dispersion in per-capita income distributions (Blundell et al., 2008). But

this measure violates the Pigou-Dalton principle (Araar and Duclos, 2006). We use GE indices

instead, since these satisfy the axioms suggested in the inequality measurement literature. We doc-

ument specific cases where the variance of log incomes decrease while the GE2 measure indicates

the opposite.

We find that inter-state inequality has declined over the 1946-2016 period indicating conver-

gence across the states. For the GE2 index, the Fieller-type and Delta methods lead to contradictory

conclusions: in contrast to the former, the latter suggests that inequality declines are insignificant at

usual levels. Results with non-OECD countries stress the severe consequences of ignoring identi-

fication problems: with the GE2 index, the Fieller-type method produces an unbounded set, which

casts serious doubts on the reliability of the no-change results using the Delta method.

The rest of the paper is organized as follows. Section 2 derives Fieller-type confidence sets.

Section 3 reports the results of the simulation study. Section 4 contains the inter-state convergence

application, and Section 5 concludes.
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2 Fieller-type confidence sets for Generalized Entropy inequality measures

An inequality measure is a measure of dispersion for the distribution of a random variable.

Throughout this paper, it will be convenient to focus on income distributions, though our results

also apply to other variables relevant to inequality studies, such as wage, health, and consumption

distributions. Many inequality measures, including the GEγ class, solely depend on the underlying

distribution and can typically be written as a functional which maps the space of the cumulative

distribution function (CDF) to the nonnegative real line R0
+.

Our aim is to make inference on the GEγ measure for any given γ ∈ (0, 2). In particular,

we wish to build an asymptotic Fieller-type confidence set (FCS) for the difference between two

measures. We call this problem the two-sample problem, as opposed to the one-sample problem

where the objective consists in testing and building a confidence interval for a single index. The

crucial difference between a FCS and its Wald-type counterpart based on using an approximate

standard error derived by the Delta method (DCS) is that FCS start by reformulating the null

hypothesis in a linear form. One then proceeds by inverting the square of the t-test associated with

the reformulated linear hypothesis. This avoids the irregularities which affect the validity of the

Delta method (e.g., as the denominator approaches zero).

A consequence of rewriting the null hypothesis in linear form is that the variance used by the

Fieller-type statistic depends on the true value of the tested parameter. This leads to a quadratic

inequality problem. The resulting confidence regions are not standard, in the sense that they may

be asymmetric, consisting of two disjoint unbounded confidence intervals or the whole real line R.

Nevertheless, unbounded intervals are an attractive feature of the method which addresses coverage

problems (Koschat et al., 1987; Gleser and Hwang, 1987; Dufour, 1997; Dufour and Jasiak, 2001;

Dufour and Taamouti, 2005, 2007; Bertanha and Moreira, 2016). For a geometric comparison of

the Fieller and Delta methods, see Hirschberg and Lye (2010).

Let X be a positive random variable such that both moments EF(X) and EF(X
γ) are finite, i.e.

P[X > 0]> 0 , 0< µX := EF(X)< ∞ , 0< νX(γ) := EF(X
γ)< ∞ . (2.1)

Then the GEγ(X) measure can be expressed as in Shorrocks (1980):

GEγ(X) = 1
γ(γ−1)

[
EF (X

γ )
[EF (X)]γ

−1
]

for γ ̸= 0, 1 ,

GE0(X) = EF [log(X)]− log[EF(X)]

GE1(X) = EF [X log(X)]
EF (X)

− log[EF(X)] .

(2.2)

This class of measures includes several common indices, including two well-known ones intro-

duced by Theil (1967): the Mean Logarithmic Deviation (MLD), which is the limiting value of the

4



GEγ(X) as γ approaches zero, and the Theil index, which is the limiting value of the GEγ(X) as

γ approaches 1. When γ = 2, the index is equal to half the squared coefficient of variation and is

related to the Hirschman-Herfindahl (HH) index, used in industrial organization (Schluter, 2012).

The Atkinson index can be obtained from the GEγ(X) index using an appropriate transformation.

Denote by X the random variable representing incomes of individuals from the first population

with CDF FX , and by Y the incomes of individuals from the second population with CDF FY , both

satisfying (2.1). We assume we have i.i.d. samples X1, . . . ,Xn and Y1, . . . ,Ym from each population.

The empirical distribution functions (EDFs) associated with these samples are:

F̂X(x) =
1

n

n

∑
i=1

1(Xi ≤ x) , F̂Y (y) =
1

m

m

∑
j=1

1(Yj ≤ y) , (2.3)

where 1(·) is the indicator function that takes the value 1 if the argument is true, and 0 otherwise.

The following presentation sets γ ̸= 1,0. The Theil index can be treated along the same lines,

beginning from the expressions in (2.2). The MLD measure eschews the inference problem asso-

ciated with ratios; for further insights, see Cowell and Flachaire (2018) and the references therein.

Under standard laws of large numbers, we can consistently estimate the index GEγ(X) and GEγ(Y )

by

ĜEγ(X) :=
1

γ(γ−1)

[
ν̂X(γ)

µ̂
γ

X

−1

]
, ĜEγ(Y ) :=

1

γ(γ−1)

[
ν̂Y (γ)

µ̂
γ

Y

−1

]
, (2.4)

where

µ̂X :=
∫

xdF̂X =
1

n

n

∑
i=1

Xi , ν̂X(γ) :=
∫

xγdF̂X =
1

n

n

∑
i=1

X
γ

i , (2.5)

µ̂Y :=
∫

ydF̂Y =
1

m

m

∑
j=1

Yj , ν̂Y (γ) :=
∫

yγdF̂Y =
1

m

m

∑
j=1

Y
γ

j . (2.6)

We will now propose level 1−α confidence sets for the difference under consideration, which can

be written as a ratio of the four moments µx, νx, µy, and νy:

∆GEγ := GEγ(X)−GEγ(Y ) =
νX(γ)µ

γ

Y −νY (γ)µ
γ

X

γ(γ−1)µ
γ

Y µ
γ

X

. (2.7)

∆GEγ can be estimated by substituting estimates of the relevant moments [see (2.5) - (2.6)]:

∆ĜEγ := ĜEγ(X)− ĜEγ(Y ) =
ν̂X(γ)µ̂

γ

Y − ν̂Y (γ)µ̂
γ

X

γ(γ−1)µ̂
γ

Y µ̂
γ

X

. (2.8)

Our analysis covers three cases defined by the following assumptions.

Assumption 2.1. Samples are of equal sizes and independent.
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Assumption 2.2. Samples are of unequal sizes and independent.

Assumption 2.3. Samples are of equal sizes and dependent.

Denote by λ the vector of the moments µX , νX , µY , and νY :

λ = (λ1, λ2, λ3, λ4)
′ = (µX , νX , µY , νY )

′, (2.9)

and by λ̂ the vector of the estimates of the moments in λ defined in (2.5) - (2.6). Furthermore, on

setting

T := τ⊗ I2, τ :=

[
n 0

0 m

]
(2.10)

where I2 is the 2× 2 identity matrix. Under the standard assumption that the estimated moments

defined in (2.9) are asymptotically normal, we can write:

T−1/2(λ̂ −λλλ )
D−→ N(000, ΣΣΣ), ΣΣΣ :=

[
σi j

]
i, j=1, ... ,4

. (2.11)

The standard DCS is obtained by inverting the square (or the absolute value) of the t-test

associated with

HD(∆0) : ∆GEγ = ∆0 (2.12)

where ∆0 is any known admissible value of ∆GEγ , including possibly ∆0 = 0, for equality. We

derive the DCS and FCS for each of Assumptions 2.1 - 2.3. These cases will actually differ only

by the expression of the variance. Thus to avoid redundancy, we will derive the method in its most

general form and state the restrictions required to obtain the relevant formulae in each case.

By inverting a test statistic with respect to the parameter tested (∆0 in this case), we mean

collecting the values of the parameter for which the test cannot be rejected at a given significance

level α . Assuming that the estimator is asymptotically normal, this can be carried out by solving

the following inequality for ∆0:

(∆ĜEγ −∆0)
2 ≤ z2

α/2V̂[∆ĜEγ ] (2.13)

where ∆ĜEγ = ĜEγ(X)− ĜEγ(Y ) and zα/2 is the asymptotic two-tailed critical value at the sig-

nificance level α (i.e., P[Z ≥ zα/2] = α/2 for Z ∼ N[0, 1]) and is the estimate of the asymptotic

variance. The solution of (2.13) yields the Delta-method confidence set:

DCS(∆GEγ ;1−α) =
[
∆ĜEγ ± zα/2 [V̂(∆ĜEγ)]

1/2
]
. (2.14)

The formula for the asymptotic variance V (∆ĜEγ) in (2.14) depends on the assumptions made

6



on the observations. For the assumptions 2.1 - 2.3, we get by using the Delta method:

under Ass. 2.1 : V(∆ĜEγ) =
1

n

2

∑
i=1

2

∑
j=1

∂∆GEγ

∂λi

∂∆GEγ

∂λ j

σi j+
1

n

4

∑
i=3

4

∑
j=3

∂∆GEγ

∂λi

∂∆GEγ

∂λ j

σi j , (2.15)

under Ass. 2.2 : V(∆ĜEγ) =
1

n

2

∑
i=1

2

∑
j=1

∂∆GEγ

∂λi

∂∆GEγ

∂λ j

σi j+
1

m

4

∑
i=3

4

∑
j=3

∂∆GEγ

∂λi

∂∆GEγ

∂λ j

σi j , (2.16)

under Ass. 2.3 : V(∆ĜEγ) =
1

n

4

∑
i=1

4

∑
j=1

∂∆GEγ

∂λi

∂∆GEγ

∂λ j

σi j . (2.17)

V̂(∆ĜEγ) may then be computed by replacing σi j with σ̂i j,and λ with λ̂ .

In contrast, we propose a Fieller-type set by inverting the square of the t-test associated with

a linearized counterpart of HD(∆0). We thus first reformulate the null hypothesis in a linear form

(without the ratio transformation). This can be obtained through the multiplication of both sides of

(2.12) by the common denominator γ(γ − 1)µ
γ

X µ
γ

Y . For presentation clarity, we denote by θ1 and

θ2 the numerator and the denominator in (2.7):

θ1 = νX(γ)µ
γ

Y −νY (γ)µ
γ

X , θ2 = γ(γ−1)µ
γ

Y µ
γ

X . (2.18)

The linear form of the null hypothesis is the following:

HF(∆0) : Θ(∆0) = 0 where Θ(∆0) := θ1−θ2∆0 . (2.19)

We then consider the acceptance region associated with the t-test of this linear hypothesis:

Θ̂(∆0)
2 ≤ z2

α/2 V̂[Θ̂(∆0)] (2.20)

where we use the moment-type estimators based on (2.5) - (2.6), i.e.

Θ̂(∆0) := θ̂1− θ̂2∆0, θ̂1 := ν̂X(γ)µ̂
γ

Y − ν̂Y (γ)µ̂
γ

X , θ2 := γ(γ−1)µ̂
γ

Y µ̂
γ

X , (2.21)

and V̂[Θ̂(∆0)] is a consistent estimator of V[Θ̂(∆0), the asymptotic variance of Θ̂(∆0) under

HF(∆0). Note the latter consistency needs to hold only under the null hypothesis HF(∆0). On using

the asymptotic normality assumption (2.11), the acceptance region (2.20) yields a confidence for

∆GEγ with level 1−α (asymptotically):

FCS[∆GEγ ;1−α] = {∆0 : Θ̂(∆0)
2 ≤ z2

α/2V̂[Θ̂(∆0)]} (2.22)
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We call FCS[∆GEγ ;1−α] the level-(1−α) Fieller-type confidence set for ∆GEγ . Estimating

V[Θ̂(∆0)] will require estimating the asymptotic covariance of θ̂ = (θ̂1, θ̂2)
′. For future reference,

we denote the latter and the corresponding estimator as follows:

V(θ̂) =

[
V(θ̂1) C(θ̂1, θ̂2)

C(θ̂1, θ̂2) V(θ̂2)

]
, V̂(θ̂) =

[
V̂(θ̂1) Ĉ(θ̂1, θ̂2)

Ĉ(θ̂1, θ̂2) V(θ̂2)

]
. (2.23)

The form of the Fieller-type confidence may not be clear from (2.22). The following theorem

characterizes FCS[∆GEγ ;1−α] in an explicit way.

Theorem 2.1. Let V̂(θ̂) be an estimate of V(θ̂) in (2.23). Then the confidence set FCS[∆GEγ ;1−
α] defined in (2.22) can be computed as follows:

FCS[∆GEγ ;1−α] = {∆0 : A∆
2
0+B∆0+C ≤ 0}

=



[
−B−

√
D

2A
, −B+

√
D

2A

]
if D≥ 0 and A> 0]

−∞, −B+
√

D
2A

]
∪
[
−B−

√
D

2A
,+∞

[
if D≥ 0 and A< 0]

−∞,−C
B

]
if A= 0 and B> 0[

− C
B
, ∞
[

if A= 0 and B< 0

R if [A= B= 0 and C ≤ 0] or [D< 0 and A≤ 0]

/0 if [A= B= 0 and C > 0] or [D< 0 and A> 0]

(2.24)

where

A := θ̂
2
2 − z2

α/2V̂(θ̂2), B :=−2[θ̂1θ̂2− z2
α/2Ĉ(θ̂1, θ̂2)], C := θ̂

2
1 − z2

α/2V̂(θ̂1) , (2.25)

D := B2−4AC = 4z2
α/2{[θ̂

2
1 V̂(θ̂2)+ θ̂

2
2 V̂(θ̂1)−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)]

+ z2
α/2[Ĉ(θ̂1, θ̂2)

2− V̂(θ̂1)V̂(θ̂2)]} . (2.26)

If furthermore V̂(θ̂) is positive definite, then

D< 0 =⇒ [A< 0 and C < 0] . (2.27)

The proof is available in Appendix A. Unlike the Delta method, the Fieller-type method satis-

fies the theoretical result which states that, for a confidence interval of a locally almost unidentified

(LAU) parameter, or a parametric function, to attain correct coverage, it should allow for a non-

zero probability of being unbounded (Koschat et al., 1987; Gleser and Hwang, 1987; Dufour, 1997;
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Dufour and Taamouti, 2005, 2007; Bertanha and Moreira, 2016).

Theorem 2.1 allows for non-positive definite matrix V̂(θ̂) [at least, for the specific sample

considered]. When V̂(θ̂) is positive definite, (2.27) implies that FCS[∆GEγ ;1−α] may be empty

only when A= B= 0 and C > 0, i.e. A∆2
0+B∆0+C =C > 0 [an event with zero probability when

(θ̂1, θ̂2)
′ has a Gaussian distribution]. Note that the condition A> 0 means that θ2 is significantly

different from zero [according to the criterion θ̂ 2
2 /V̂(θ̂2) > z2

α/2
], while C > 0 means that θ1 is

significantly different from zero [according to the criterion θ̂ 2
1 /V̂(θ̂1)> z2

α/2].

Consistent estimation of these depends on the assumptions made on the observations

[X1, . . . ,Xn and Y1, . . . ,Ym]. For the assumptions 2.1, 2.2 and 2.3, we get (using the delta method):

under Ass. 2.1 : V(θ̂1) =
1

n
S11 , V(θ̂2) =

1

n
S22 , C(θ̂1, θ̂2) =

1

n
(S12+S21) , (2.28)

under Ass. 2.2 : V(θ̂1) =
1

n
S11 , V(θ̂2) =

1

m
S22 , C(θ̂1, θ̂2) =

1

n
S12+

1

m
S21 , (2.29)

under Ass. 2.3 : C(θ̂k, θ̂l) =
1

n

4

∑
i=1

4

∑
j=1

∂θk

∂λi

∂θl

∂λ j

σi j for k = 1,2, l = 1,2, (2.30)

where

S11 :=
4

∑
i=1

4

∑
j=1

∂θ1

∂λi

∂θ1

∂λ j

σi j , S22 :=
4

∑
i=1

4

∑
j=1

∂θ2

∂λi

∂θ2

∂λ j

σi j , (2.31)

S12 :=
2

∑
i=1

2

∑
j=1

∂θ1

∂λi

∂θ2

∂λ j

σi j , S21 :=
4

∑
i=3

4

∑
j=3

∂θ1

∂λi

∂θ2

∂λ j

σi j . (2.32)

The above presumes asymptotic normality of the underlying criteria. In fact, the considered

measures are known transformations of two moments the estimators of which are asymptotically

normal under standard regularity assumptions; see Davidson and Flachaire (2007) and Cowell and

Flachaire (2007). These typically require that the first two moments exists and are finite. Asymp-

totic normality of the statistics in (2.13) and (2.20) thus follows straightforwardly. Nevertheless,

convergence in this context is known to be slow, especially when the distribution of the data is

heavy-tailed and with indices that are sensitive to the upper tail. Our simulations confirm these

issues, yet the Fieller-based criteria perform better than the Delta method in finite samples because

these eschew problems arising from the ratio.

3 Simulation evidence

This section describes a simulation study designed to compare the finite-sample properties of

FCS to the standard DCS. This will be done for the two popular inequality measures nested in the
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general entropy class of inequality measures: the Theil Index (GE1), and half of the coefficient of

variation squared (GE2) which is related to the Hirschman-Herfindahl (HH) index. The tables and

figures are in the appendix.

We report the rejection frequencies of the tests underlying the proposed confidence sets, under

both the null hypothesis (level control) and the alternative (power). Under the null hypothesis,

these can also be interpreted as 1 minus the corresponding coverage probability for the associated

confidence set. So we are studying here both the operating characteristics of tests used and the

coverage probabilities of the confidence sets defined above. For further insight on confidence set

properties, we also study the frequency of unbounded outcomes and the width of the bounded ones.

Since available inference methods perform poorly when the underlying distributions are

heavy-tailed, we designed our simulation experiments to cover such distributions by simulating

the data from the Singh-Maddala distribution, which was found to successfully mimic observed

income distributions for developed countries such as Germany (Brachmann et al., 1995). Another

reason to use the Singh-Maddala distribution is that it was widely used in the literature which

makes our results directly comparable to previously proposed inference methods. The CDF of the

Singh-Maddala distribution can be written as

FX(x) = 1−
[

1+

(
x

bX

)aX
]−qX

(3.1)

where aX , qX and bX are the three parameters defining the distribution. aX influences both tails,

while qX only affects the right tail. bX is a scale parameter to which we give little attention as the

inequality measures considered in this paper are scale invariant. This distribution is a member of

the five-parameter generalized beta distribution and its upper tail behaves like a Pareto distribution

with a tail index equal to the product of the two shape parameters aX and qX (ξX = aX qX ). The

k-th moment exists for −aX < k < ξX which implies that a sufficient condition for the mean and

the variance to exist is −aX < 2< ξX .

The moment of order γ of Singh-Maddala distribution have the following closed form:

νX(γ) := E(X γ)=
b

γ

X Γ
(
γa−1

X +1
)

Γ
(
qX − γa−1

X

)
Γ(qX)

(3.2)

where Γ(·) is the gamma function. For γ = 1, this yields the mean of X [µX = νX(1) = E(X)] and,

for γ = 2, the second moment of X [νX(2) = E(X2)]. Similarly, replacing X by Y in the above

expressions, we can compute µY and νY (2). Using the values of these moments, we compute

analytical expressions for GEγ(X) and GEγ(Y ). Each experiment involves 10000 replications and

sample sizes of n= 50, 100, 250, 500, 1000, 2000. The nominal level α is set at 5%.

The hypotheses of interest take the form H0(γ) : GEγ(X)−GEγ(Y ) = ∆0, for γ = 1 or 2. Even
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though we emphasize the important problem of testing equality (∆0 = 0), we also consider the

problem of testing nonzero differences (∆0 ̸= 0). Our simulation experiments cover the following

designs.

1. Experiment I – Independent samples of equal sizes (m= n):

(a) ∆0 = 0 with FX = FY ; (b) ∆0 = 0 with FX ̸= FY ; and (c) ∆0 ̸= 0 (hence FX ̸= FY ).

2. Experiment II – Independent samples of unequal sizes (m ̸= n):

(a) ∆0 = 0 with FX = FY ; (b) ∆0 = 0 with FX ̸= FY ; and (c) ∆0 ̸= 0 (hence FX ̸= FY ).

3. Experiment III – Dependent samples of equal sizes (m= n):

(a) ∆0 = 0 with FX = FY ; (b) ∆0 = 0 with FX ̸= FY ; and (c) ∆0 ̸= 0 (hence FX ̸= FY ).

The simulation results are presented graphically through plotting the rejection frequencies

against the number of observations. When the number of observations is different between the

two samples, we plot the rejection frequencies against the number of observations of the smallest

sample.

For the Delta method, we use the critical region [∆ĜEγ − ∆0]
2 > z2

α/2V̂[∆ĜEγ ], based on

(2.13); for the Fieller method, we use the critical region Θ̂(∆0)
2 > z2

α/2V̂[Θ̂(∆0)], as described in

(2.20). Power is investigated by assuming distributions with heavier left and right tails to draw the

first sample, and distributions with less heavy left and right tails to draw the second sample. We

do so by considering DGPs with a lower value of the shape parameter aX and a higher value of the

shape parameter aY . The rejection frequencies under the alternative are not size-controlled, yet we

compare power when both methods have similar sizes.

Our extensive simulation study reveals several important results. First, the Fieller-type

method outperforms the Delta method under most specifications, and when it does not, it per-

forms as well as the Delta method. Put differently, the Fieller-type method was never dominated

by Delta method. Second, the Fieller-type method is more robust to irregularities arising from both

the left and right tails. Third, the Fieller-type method gains become more sizeable as the sensitivity

parameter γ increases. Fourth, the performance of the Fieller-type method matches, and for some

cases exceeds, the permutation method which is considered one of the best performing methods

proposed in the literature so far for the two-sample problem. In the remainder of this section we

take a closer look at the simulation evidence supporting the above findings.

Experiment I: Independent samples of equal sizes – The left panels of Figures B.1 and B.2

depict the rejection frequencies against the sample size for GE1 and GE2 respectively. Here the

distributions are assumed identical [FX = FY ]. Comparing the two panels, we notice that better size

control with the Fieller-type method is more noticeable for GE2: the size gains are larger when the

11



index used is more sensitive to the changes in the right tail of the underlying distributions. As the

sample size increases the rejection probabilities of the two methods converge to the same level.

In the second specification, the indices are identical, but the underlying distributions are not

[∆0 = 0 with FX ̸= FY ]. The left panel of Figure B.3 plots the FCS and DCS rejection frequencies

for this scenario. Again, the results suggest that the Fieller-type method outperforms the Delta

method in small samples in terms of size, and the gains are most prominent for GE2. The gains

are smaller in this scenario compared to the previous one. As we will show later, the Fieller-

type method will not solve the over-rejection problem under all scenarios, but it will reduce size

distortions in many cases, and when it does not, it performs as well as the Delta method.

We now move to the third scenario, where we consider different distributions under the null

hypothesis and unequal inequality indices [∆0 ̸= 0]. In this scenario, the difference under the null

hypothesis can take any admissible value (possibly different from zero). Testing a zero value,

although informative, does not always translate into a confidence interval. Hence, one of our

contributions lies in considering the non-zero null hypothesis which allows us to rely for inference

on the more-informative confidence sets approach rather than testing the equality of the difference

between the two indices to one specific value.

The results, as shown in the left panels of Figures B.5 and B.6, suggest a considerable im-

provement. In both panels, the Fieller-type method leads to size gains and almost achieves correct

size. The improvements are more pronounced for the GE2 index. The right panels of Figures B.1

to B.6 illustrate the power of FCS and DCS for both GE1 and GE2 under the three scenarios con-

sidered: [∆0 = 0 with FX = FY ], [∆0 = 0 with FX ̸= FY ] and [∆0 ̸= 0] respectively. The results show

that the Fieller-type method is as powerful as the Delta method when compared at sample sizes

where both FCS and DCS have similar empirical rejection frequencies.

Experiment II: Independent samples of unequal sizes – Empirically, when comparing inequality

levels spatially or over time, it is unlikely one encounters samples with the same size. Thus, it is

useful to assess the performance of our proposed method when the sample sizes are unequal. To

do so, we adjust our simulation design by setting the number of observations of the second sample

to be as twice as large as the first sample. If we denote the size of the first sample by n and that of

the second by m, then n= 2m.4 The results are analogous to those obtained in the first experiment,

under which sample sizes were equal, in the sense that the Fieller-type method improves level

control for both GE1 and GE2, with a larger improvement for GE2. The size and power simulation

results for the three scenarios considered here are available in the online appendix.

Experiment III: Dependent samples of equal sizes – Another interesting case is the one where

the samples are dependent. This occurs mostly when comparing inequality levels before and after

a policy change, such as comparing pre-tax and post-tax income inequality levels, or comparing

4The results presented here are not sensitive to choice of the ratio between n and m
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the distributional impact of a macroeconomic shock. To accommodate for such dependencies, we

modify the simulation design as follows: the samples are drawn in pairs from the joint distribution,

which we denote FXY , where the correlation between the two marginal distributions is generated

using a Gumbel copula with a high Kendall’s correlation coefficient of 0.8. For this case, results

are in line with the independent cases, in small samples and when larger γ is used. Size and power

plots are available in the online appendix.

Comparing the Fieller-type method with the permutation method – As outlined in the intro-

duction, the permutation-based Monte-Carlo test approach proposed in Dufour et al. (2019) stands

out as one of the best performing nonparametric inference method for testing the equality of two

inequality indices. The authors focus on the Theil and the Gini indices. The permutation testing

approach provides exact inference when the null distributions are identical (FX = FY ) and it leads

to a sizeable size distortion reduction when the null distributions are sufficiently close (FX ≈ FY ).

However, as the null distributions differ, the performance of the method deteriorates.

Figures B.7 and B.8 plot size and power of the permutation Fieller-type methods against the

tail index of FY . As in Dufour et al. (2019), we fix the tail index of the null distribution FX to 4.76.

When the distributions under the null hypothesis are identical, the permutation method is exact

and thus it is important to compare methods when exactness does not hold. Our results point to

two main advantages of the Fieller-type method over the permutation method: for the Theil index,

the Fieller-type method is more powerful and these power gains are magnified as the difference

between the indices becomes larger. On the other hand, when considering the GE2, there are size

gains mainly when the tail index is relatively small (i.e., when the right tail is heavier). These size

gains are not associated with power loss as the right panel of the same figure illustrates.

The attraction of the Fieller-type method with respect to the permutation approach goes be-

yond the superior performance highlighted above. Unlike the Fieller-type method, its applicability

is restricted to the null hypothesis of equality (∆0 = 0), and further theoretical developments would

be needed to test more general hypotheses. Building confidence intervals using a permutation-

based or another simulation-based method (such as the bootstrap) would also require a computa-

tionally intensive numerical inversion (e.g., through a grid search). So another appealing feature

of the Fieller-type approach comes from the fact that it is computationally easy to implement.

Behavior with respect to the tails – To better understand under what circumstances does the

Fieller-type method improves level control, we assess the performance of the proposed method to

different tail shapes. The literature has focused on the role of heavy right tails in the deterioration of

the Delta method confidence sets. However, as our results indicate, heavy left tails also contribute

to the under-performance of the standard inference procedures. The Fieller-type method is less

prone to such irregularities arising from both ends of the distributions and thus it reduces size

distortions whether the cause of the under-performance is arising from the left tail or the right
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tail. This is supported by the results reported below in Tables C.3 and C.4. The results in these

tables rely on samples of 50 observations. Table C.3 reports the percentage difference of the

rejection frequencies as the right tails of the two distributions become thicker. The right-tail shape

is determined by the tail index (ξX = aX qX ). The smaller the tail index, the thicker is the right tail

of the distribution under consideration. The reliability advantage of the Fieller-type method (over

the Delta method) increases as the right tail of the distributions gets thicker.

To study the impact of the left tail, the parameters of the first distribution are fixed at aX = 2.8

and qX = 1.7, while aY and qY are varied such that the left tail becomes thicker and the right tail is

left unchanged. This is done by decreasing aY , and increasing qY enough to keep the tail index fixed

(ξX = ξY = 4.76). The last column of Table C.4 shows the percentage difference of the rejection

frequencies between the Fieller-type and Delta methods. As the left tail thickens, the performance

of the Delta method deteriorates relative to the Fieller-type method, and thus the Fieller method

better captures irregularities in the left tail. This conclusion holds regardless of whether the left

tail of the second distribution is lighter or thicker than the left tail of the first distribution.

Fieller-type method and the sensitivity parameter γ – A consistent conclusion from our results

is that the Fieller’s-induced size gains are more prominent for GE2 compared to GE1, that is, when

the sensitivity parameter γ increases from 1 to 2. This might suggest that as γ increases, size gains

from the Fieller-type method increase. Such generalization is indeed supported by simulation

evidence illustrated by Figure B.9. The left panel plots rejection frequencies of DCS and FCS for

γ ∈ [0, 3.5] for independent samples. The right panel considers dependent samples. As γ becomes

larger, FCS outperforms DCS at an increasing rate. The superiority of the Fieller-type method in

this context is unaffected by the independence assumption as shown in the right panel where the

rejection frequencies are plotted against γ for dependent samples with Kendall’s correlation of 0.8.

Recall that the parameter γ characterizes the sensitivity of the index to changes at the tails of

the distribution. For instance, the index becomes more sensitive to changes at the upper tails as γ

increases (assuming positive γ). Thus, relative to the Delta method, the performance of the Fieller-

type method in the two-sample problem improves as the right tail of the underlying distributions

becomes heavier. This conclusion, as we saw from the results above, is robust to the assumptions

about the independence of the samples and to the distance between the two null distributions.

The identical performance of the Fieller-type method and Delta method at γ = 0 is expected

as the underlying t-tests inverted in the process of building FCS and DCS are identical since the

null hypothesis is no longer a ratio. To see that, recall that the limiting solution for GEγ(·) at γ = 0

is equal to EF [log(X)]− log[EF(X)]. Graphically, we can see that both methods start off at the

same rejection frequencies when γ = 0, and then diverge as γ increases.

Robustness to the shapes of the null distributions – So far, our simulation experiments have

focused on comparing the finite-sample performance of FCS and DCS by studying their behavior
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as the number of observation increases, holding the parameters of the two underlying null dis-

tributions constant. Here we try to check the robustness of our results by fixing the number of

observations at 50 and allowing the parameters (aX , qX , aY and qY ) to vary. This type of analysis

highlights the (in)sensitivity of our conclusions regarding the Fieller-type method to the shape of

the null distributions. In left panel of Figure B.10, we plot the rejection frequencies of both meth-

ods against the sensitivity parameter ξX for the Theil index. We set ξX equal to 4.76 and allow ξY

to vary between 3.05 and 6.255. In the right panel, we focus on the GE2 index. Here ξX is fixed at

4.76 again and the parameter ξY ranges between 3.293 and 5.7107.

For small samples, the gains of the Fieller-type method are maintained regardless the shape

of the distribution. The gains are more pronounced for GE2 compared to GE1. These two graphs

show that the gains attained by the Fieller-type method are not arbitrary and that they hold for

various parametric assumptions of the underlying distributions.

Slow convergence – Inequality estimates are characterized by slow convergence when underlying

distributions are heavy-tailed. This problem has in fact motivated most of the proposed asymptotic

refinements in this literature [see Davidson and Flachaire (2007); Cowell and Flachaire (2007)].

Our results in Table C.6 corroborate this fact, as over-rejections remain even with samples as large

as 200000, particularly with the GE2 which puts more weight on the upper tail of the distribution.

On balance, our main finding is the superiority of the Fieller method in finite samples.

Widths of the confidence sets – The last two columns of Table C.6 show the average widths

of the FCS and the DCS for the two sample problem. Since the Fieller’s method can produce

unbounded confidence sets, we take the average of the widths based on the bounded confidence

sets. In general, compared to the FCS widths, the DCS widths are shorter with small samples, i.e.

they are shorter when the Delta method rejection frequencies are higher than those of Fieller. This

suggest that the DCS are too short and thus they tend to undercover the true difference between the

indices. As the sample size increases, the two methods exhibit similar performance and the widths

coincides.

4 Application: Regional economic convergence

In this section, we present empirical evidence on the relevance of our theoretical results to

applied economic work. We assess economic convergence across the U.S. states between 1946

and 2016. In what follows, unless stated otherwise, tests and confidence sets are at the 5% level.

The late 1980’s witnessed a new wave of interest in economic convergence that was spurred

by the revival of growth models. The convergence hypothesis, first theorized by the popular Solow

growth model, postulates that in the long run, economies will converge to similar per-capita income

levels. The convergence question is important from theoretical and policy perspectives.
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Theoretically, Romer (1994) and Rebelo (1991) argue that the rejection of the convergence

hypothesis provides empirical support for the endogenous growth model and evidence against

the neoclassical growth model. In the latter models, per-capita income convergence results from

the diminishing return to capital assumption. This assumption implies that the return to capital

increases in economies with low level of capital and decreases in capital-abundant economies.

Moreover, since the rate of return on capital is higher in poorer economies, investments will migrate

from rich economies to poorer ones, further enhancing growth and reducing the gap between them.

On the other hand, in endogenous growth models as in Romer (1994) and Rebelo (1991), the

diminishing rate of return on capital is considered implausible once knowledge is assumed to be

one of the production factors. Thus, the model does not predict convergence, but on the contrary

predicts that divergence might occur.

Empirically, policy-makers are interested in learning about the dynamics of income dispersion

across regions/states so they can engage in redistributive policies when needed or to assess the

distributional impact of a specific policy. Among the various definitions of convergence provided

in the literature, two definitions appear to dominate the work on this topic: β -convergence and

σ -convergence (Barro, 2012; Barro and Sala-i Martin, 1992; Quah, 1996; Sala-i Martin, 1996;

Higgins et al., 2006). Although related, these two measures might lead to different conclusions

as they capture different dimensions of economic convergence. For an analytical treatment of the

relationship between the two measures, see Higgins et al. (2006).

β -convergence occurs when there is a negative relationship between the growth rate and the

initial level of per-capita income, that is, when poor economies grow at a faster rate than the rich

ones. The σ -convergence concept focuses on the dispersion of the income distribution which is

typically measured in this literature by the variance of the logs. The variance of logs is scale-

independent and thus multiplying the per-capita incomes by a scale k has no impact on the dis-

persion level. Alternative scale-independent measures of dispersion such as inequality measures

have generally not been utilized in convergence analysis. The only exception is Young et al. (2008)

which reported the Gini coefficient for comparison purposes with reference to the variance of logs.

One feature of inequality measures such as the Gini coefficient and the GE measures is that

they respect the Pigou-Dalton principle, which states that a rank preserving transfer from a richer

individual/state to a poorer individual/state should make the distribution at least as equitable. In

the context of economic convergence, this principle is particularly relevant. For instance, if the

US government makes a transfer from a richer state to a poorer one, one would expect dispersion

between states to decline. The Gini and GE measures would capture this decline, whereas the

variance of logs might indicate no change or even an increase in dispersion. The fact that the

variance of logs violates the Pigou-Dalton principle is usually neglected in the literature on the

grounds that the problem occurs only at the extreme right tail of the distribution. However, Foster
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and Ok (1999) show that disagreement between the variance of logs and inequality measures can

result from changes in incomes in other parts of the distribution including the left tail. The fol-

lowing example (Foster and Ok, 1999) underscores the importance of the Pigou-Dalton principle

and its implications for convergence. Consider two income distributions defined by the following

incomes (2, 5, 10, 28, 40) and (2, 5, 10, 34, 34) where the latter is associated with a transfer from

the richest [40 to 34] incomes to poorer ones [28 to 34]. The resulting change in the variance of

logs, from 1.5125 to 1.5154, suggests an increase of inequality. In contrast, the GE2 index declines

from 0.3696 to 0.3446, thereby capturing the expected distributional impact of such a transfer.

Our empirical analysis of per-capita income dispersion across the US is motivated by com-

parably peculiar statistics. Consider the publicly available per-capita income at the state level for

48 out of the 50 states (as the data for Alaska and Hawaii is not available). The variance of logs

between the years 2000 and 2016 indicates a 3% increase in dispersion, whereas GE2 indicates

a decline in dispersion by 0.3%. This provides a compelling basis for the more comprehensive

inferential analysis reported next.

Using the same data source, we first compute the Theil index for the per-capita income distri-

butions of 1946 and 2016. Then we construct the Delta and Fieller confidence sets for the differ-

ence between the two indices. A standard interpretation of differences between the two confidence

intervals (at the considered level) implies that one will reject the null hypothesis ∆GEγ = ∆0 for a

given ∆0 while the other fails to reject it. Special attention should be paid to the ∆0 = 0 case, as

decisions might reverse the conclusion on whether convergence holds or not.

Using the Theil index, our results in the first column of Table 4.1 indicate that per-capita

income inequality across states has declined between 1946 and 2016. The decline in inequality

implies convergence. This is compatible with the general convergence trend reported in the liter-

ature (Barro and Sala-i Martin, 1992; Bernat Jr, 2001; Higgins et al., 2006). Although the Fieller

and Delta-method confidence sets are not identical, they still lead to the same conclusion which is

that the decline of inequality is statistically different from zero at the level used.

In the second column of Table 4.1, we consider the same problem using GE2 index rather

than the Theil one. This index puts more weight on the right tail of the distribution. In this case,

the results also indicate a decline of inequality across states. Inequality in 1946 was 0.02679 and

declined by −0.01163 by 2016. The confidence sets based on the Delta and Fieller-type methods

lead to opposite conclusions about the statistical significance of the decline in inequality. DCS

fails to reject the null hypothesis of no change in inequality, thus the decline in inequality based on

DCS is not statistically different from zero. On the other hand, the Fieller-type methods rejects the

hypothesis of no inequality change, which entails that the decline is significant.

In addition to DCS and FCS, we report the permutational p-values. For the GE2, the p-value

is less than 5% and thus we reject the null hypothesis of no change in inequality contradicting
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Table 4.1: Estimates and confidence intervals of the change in inequality

across U.S. states between 1946 and 2016.

Theil Index / GE1 GE2

First sample - 1946 0.02743 0.02679

Second sample -2016 0.0144 0.01516

GEγ(2016)−GEγ(1946) −0.01303 −0.01163

Delta C.I. [−0.02486,−0.001204] [−0.02349, 0.00024]
Inequality decreases No change in Inequality

Fieller′s C.I. [−0.02531,−0.00155] [−0.02456,−0.00043]
Inequality decreases Inequality decreases

Permutation test p−Value 0.014 0.014

Inequality decreases Inequality decreases

Number of states 48 48

Table 4.2: Estimates and confidence intervals of the change in inequality

across non-OECD countries

Theil Index / GE1 GE2

First sample - 1960 0.717621 1.46631

Second sample -2013 0.78726 1.45076

GEγ(2013)−GEγ(1960) 0.06964 −0.01554

Delta C.I. [−0.35694, 0.49623] [−1.15143, 1.120337]
Fieller′s C.I. [−0.40436, 0.63075] R
Permutation test p−value 0.886 0.992

Number of countries 72 72
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the conclusion based on the Delta method. This constitutes an empirical evidence supporting the

findings of Dufour et al. (2019).

Two conclusions can be drawn from our findings. First, the Fieller-type and the Delta methods

can lead to different confidence sets in practice which documents the empirical relevance of our

theoretical findings. Second, disparities between both sets can lead to spurious conclusions about

inequality changes if one set includes zero while the other does not. From a policy point of view,

this disparity is crucial, especially if important policy actions are motivated by underlying analysis.

We next turn to non-OECD countries between 1960 and 2013. Table 4.2 presents estimates

and confidence sets for the difference of inequality measures between the two periods. The main

finding here is that the Fieller-type confidence set based on the GE2 index is the whole real line

R. These results confirm that decisions based on Delta-method are spurious, and that a no-change

conclusion is flawed: data and measure are, instead, uninformative.

The permutational method leads results similar to Delta and the Fieller-type methods for

non-OECD countries. Available permutation tests although preferable size-wise to their standard

counterparts, are difficult to invert to build confidence sets. Instead, the confidence sets proposed

here can be unbounded and thus avoid misleading statistical inferences and policy decisions, in

particular from seemingly insignificant tests. The econometric literature on inequality has long

emphasized the need to avoid over-sized tests. Rightfully, spurious rejections are misleading.

Our results document a different although related problem: even with adequately sized no-change

tests, weak identification can undercut the reliability of policy advice resulting form insignificant

no-change test outcomes. Far more attention needs to paid to confidence sets. Moreover, sets that

can be unbounded make empirical and policy work far more credible than it can be using bounded

alternatives or no-change tests that cannot be inverted.

5 Conclusion

This paper introduces a Fieller-type method for two-sample inference problem on the GE

class of inequality indices. Simulation results confirm that the Fieller-type method outperforms

standard counterparts including the permutation test. Size gains are most prominent when using

indices that put more weight on the right tail of the distribution and results are robust to different

assumptions about the shape of the null distributions. While irregularities arising from the right tail

have long been documented, we find that left tail irregularities are equally important in explaining

the failure of standard inference methods. On recalling that permutation tests are difficult to invert,

our results underscore the usefulness of the Fieller-type method for evidence-based policy. An em-

pirical analysis of economic convergence reinforces this result, and casts a new light on traditional

controversies in the growth literature.
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Fieller’s approach is frequently applied in medical research and to a lesser extent in applied

economics despite its solid theoretical foundations (Srivastava, 1986; Willan and O’Brien, 1996;

Johannesson et al., 1996; Laska et al., 1997). This could be due to the seemingly counter-intuitive

non-standard confidence sets it produces which economists often find hard to interpret. Conse-

quently, many applied researchers encountering the estimation of ratios avoid using it and opt to

use methods that yield closed intervals regardless of theoretical validity. This paper illustrates

serious empirical and policy flaws that may result from such practices in inequality analysis.
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Appendices

A Proof of Theorem 2.1

From (2.22) and (2.21), the Fieller-type confidence region for ∆ can rewritten as follows:

FCS[∆GEγ ;1−α] = {∆0 : Θ̂(∆0)
2 ≤ z2

α/2V̂[Θ̂(∆0)]}

= {∆0 : [θ̂1− θ̂2∆0]
2 ≤ z2

α/2V̂[Θ̂(∆0)]}

= {∆0 : (θ̂ 2
2 ∆

2
0−2θ̂1θ̂2∆0+ θ̂

2
1 )≤ z2

α/2[V̂(θ̂1)−2Ĉ(θ̂1, θ̂2)∆0+ V̂(θ̂2)∆
2
0]}

= {∆0 : [θ̂ 2
2 − z2

α/2V̂(θ̂2)]∆
2
0+2[z2

α/2Ĉ(θ̂1, θ̂2)− θ̂1θ̂2]∆0+[θ̂
2
1 − z2

α/2V̂(θ̂1)]≤ 0}

= {∆0 : A∆
2
0+B∆0+C ≤ 0} , (A.1)

where

A := θ̂
2
2 − z2

α/2V̂(θ̂2) , B := 2[z2
α/2Ĉ(θ̂1, θ̂2)− θ̂1θ̂2] , C := θ̂

2
1 − z2

α/2V̂(θ̂1) . (A.2)

The expression (2.24) then follows on solving the quadratic inequation in (A.1) for ∆0, where

D = B2−4AC

= 4[z2
α/2Ĉ(θ̂1, θ̂2)− θ̂1θ̂2]

2−4[θ̂ 2
2 − z2

α/2V̂(θ̂2)][θ̂
2
1 − z2

α/2V̂(θ̂1)]

= 4{[z4
α/2Ĉ(θ̂1, θ̂2)

2+ θ̂
2
1 θ̂

2
2 −2z2

α/2θ̂1θ̂2Ĉ(θ̂1, θ̂2)]

−[θ̂ 2
1 θ̂

2
2 + z4

α/2V̂(θ̂1)V̂(θ̂2)− z2
α/2θ̂

2
1 V̂(θ̂2)− z2

α/2θ̂
2
2 V̂(θ̂1)]}

= 4z2
α/2{[z

2
α/2Ĉ(θ̂1, θ̂2)

2−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)]− [z2
α/2V̂(θ̂1)V̂(θ̂2)− θ̂

2
1 V̂(θ̂2)− θ̂

2
2 V̂(θ̂1)]}

= 4z2
α/2{[θ̂

2
1 V̂(θ̂2)+ θ̂

2
2 V̂(θ̂1)−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)]

+z2
α/2[Ĉ(θ̂1, θ̂2)

2− V̂(θ̂1)V̂(θ̂2)]} ; (A.3)

for similar arguments, see Dufour and Jasiak (2001) or Bolduc et al. (2010).

Suppose now that V̂(θ̂) is positive definite with z2
α/2 > 0. Then,

det[V̂(θ̂)] = V̂(θ̂1)V̂(θ̂2)− Ĉ(θ̂1, θ̂2)
2 > 0 (A.4)
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and

θ̂
2
1 V̂(θ̂2)+ θ̂

2
2 V̂(θ̂1)−2θ̂1θ̂2Ĉ(θ̂1, θ̂2) = (θ̂1,−θ̂2)

′
[

V̂(θ̂1) Ĉ(θ̂1, θ̂2)

Ĉ(θ̂1, θ̂2) V̂(θ̂2)

][
θ̂1

−θ̂2

]

= (θ̂1,−θ̂2)
′V̂(θ̂)

[
θ̂1

−θ̂2

]
≥ 0 . (A.5)

From (A.3), we see that

D< 0 ⇐⇒ {θ̂ 2
1 V̂(θ̂2)+ θ̂

2
2 V̂(θ̂1)−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)< z2

α/2[V̂(θ̂1)V̂(θ̂2)− Ĉ(θ̂1, θ̂2)
2]}

⇐⇒ z∗ :=
θ̂ 2

1 V̂(θ̂2)+ θ̂ 2
2 V̂(θ̂1)−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)

V̂(θ̂1)V̂(θ̂2)− Ĉ(θ̂1, θ̂2)2
< z2

α/2 . (A.6)

Further,

θ̂ 2
2

V̂(θ̂2)
− z∗ =

θ̂ 2
2

V̂(θ̂2)
− θ̂ 2

1 V̂(θ̂2)+ θ̂ 2
2 V̂(θ̂1)−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)

V̂(θ̂1)V̂(θ̂2)− Ĉ(θ̂1, θ̂2)2

=
−[θ̂ 2

2 Ĉ(θ̂1, θ̂2)
2+ θ̂ 2

1 V̂(θ̂2)
2−2θ̂1θ̂2Ĉ(θ̂1, θ̂2)V̂(θ̂2)]

V̂(θ̂2)[V̂(θ̂1)V̂(θ̂2)− Ĉ(θ̂1, θ̂2)2]

=
−[θ̂2Ĉ(θ̂1, θ̂2)− θ̂1V̂(θ̂2)]

2

V̂(θ̂2)[V̂(θ̂1)V̂(θ̂2)− Ĉ(θ̂1, θ̂2)2]
< 0 (A.7)

so that D< 0 implies

θ̂ 2
2

V̂(θ̂2)
< z∗ < z2

α/2 (A.8)

and

A= θ̂
2
2 − z2

α/2V̂(θ̂2)< 0 . (A.9)

Finally, to see that C < 0, we simply observe that D< 0 implies B2 < 4AC, hence on using A< 0,

C <
B2

4A
< 0 . (A.10)

This establishes (2.27).
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B Figures

B.1 Experiment I; Design (I-a) – Independent samples: n= m, FX = FY , ∆0 = 0

Figure B.1: Design (I-a) – Size and power of Delta and Fieller-type tests for GE1 comparisons

H0: GE1(X) = GE1(Y ), Nominal size = 0.05

GE1: Size GE1: Power

Left panel: SMX (aX = 5.8, qX = 0.499616), SMY (aY = 5.8, qY = 0.499616). GE1(X) = GE1(Y ) = 0.14011

Right panel: SMX (aX = 4.8, qX = 0.499616), SMY (aY = 6.8, qY = 0.499616). GE1(X) = 0.22857,

GE1(Y ) = 0.09514

Figure B.2: Design (I-a) – Size and power of Delta and Fieller-type tests for GE2 comparisons
H0: GE2(X) = GE2(Y ), Nominal size = 0.05

GE2: Size GE2: Power

Left panel: SMX (aX = 5.8, qX = 0.499616), SMY (aY = 5.8, qY = 0.499616). GE2(X) = GE2(Y ) = 0.24396

Right panel: SMX (aX = 4.8, qX = 0.499616), SMY (aY = 6.8, qY = 0.499616). GE2(X) = 0.63705,

GE2(Y ) = 0.13806 .
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B.2 Experiment I; Design (I-b) – Independent samples: n= m, FX ̸= FY , ∆0 = 0

Figure B.3: Design (I-b) – Size and power of Delta and Fieller-type tests for GE1 comparisons.

H0: GE1(X) = GE1(Y ), Nominal size = 0.05

GE1: Size GE1: Power

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 5.8, qY = 0.499616). GE1(X) = GE1(Y ) = 0.14011

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 6.8, qY = 0.499616). GE1(X) = 0.33830, GE1(Y ) = 0.09514 .

Figure B.4: Design ()I-b) – Size and power of Delta and Fieller-type tests for GE2 comparisons

H0: GE2(X) = GE2(Y ), Nominal size = 0.05

GE2: Size GE2: Power

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 3.8, qY = 0.9831). GE2(X) = GE2(Y ) = 0.16204

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 4.8, qY = 0.9831). GE2(X) = 0.5479, GE2(Y ) = 0.08835 .
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B.3 Experiment I; Design (I-c) – Independent samples: n= m, FX ̸= FY , ∆0 ̸= 0

Figure B.5: Design (I-c) – Size and power of Delta and Fieller-type tests for GE1 comparisons

H0: GE1(X)−GE1(Y ) = 0.04670, Nominal size = 0.05

GE1: Size GE1: Power

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 3.8, qY = 1.3061). GE1(X) = 0.14011, GE1(Y ) = 0.09340

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 4.8, qY = 1.3061). GE1(X) = 0.33829, GE1(Y ) = 0.05839

Figure B.6: Design (I-c) – Size and power of Delta and Fieller-type tests for GE2 comparisons

H0: GE2(X)−GE2(Y ) = 0.05401, Nominal size = 0.05

GE2: Size GE2: Power

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 3.8, qY = 1.2855). GE2(X) = 0.16203, GE2(Y ) = 0.10802

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 4.8, qY = 1.2855). GE2(X) = 0.54790, GE2(Y ) = 0.06367
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B.4 Comparing Fieller’s method and the permutation method

Figure B.7: Size and Power of two-sample tests

Independent samples: n= m. FX = FY , GE1(X) = GE1(Y ). Nominal size = 0.05

GE1: Size GE1: Power

Note –The left panel pertains to test levels: the rejection frequencies of asymptotic the Fieller-type and Permuted Delta

method are plotted against the tail index: ξ = [2.897, 6.256]. Power analysis is presented in the right panel: rejection

frequencies are plotted against the difference between the two indices GE1(Y )−GE1(X), with qY = 10.

Figure B.8: Size and Power of two-sample tests

Independent samples: n= m. FX = FY and GEγ(X) = GEγ(Y ). Nominal size = 0.05

GE2: Size GE2: Power

Note – The left panel pertains to test levels: the rejection frequencies of asymptotic Fieller-type and Permuted delta

methods are plotted against the tail index: ξ = [2.897, 6.256]. Power analysis is presented in the right panel: the

rejection frequencies are plotted against the difference between the two indices GE2(Y )−GE2(X), with q2= 10.
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B.5 Behavior with respect to the sensitivity parameter γ

Figure B.9: Rejection frequencies of the tests inverted to derive the Delta method and Fieller’s
confidence sets over the sensitivity parameter γ . Nominal size = 0.05

Independent samples Dependent samples

Note – The distributions under the null hypothesis are identical and defined by: SMX(aX = 2.8,qX = 1.7) and

SMY (aY = 2.8,qY = 2). n= m= 50.

B.6 Robustness to the shape of the null distributions

Figure B.10: Rejection frequencies of the tests inverted to derive the Delta method and Fieller’s
confidence sets over the tail index ξy . Nominal size = 0.05

GE1: Size GE2: Power

Note – In the left panel, we consider the Theil index where ξX is fixed at 4.76 and ξY = [3.055,6.255]. In the right

panel, we consider GE2 with ξX is fixed at 4.76 and ξY = [3.293,5.7107]. n= m= 50.
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C Tables

C.1 Effect of right tail thickness

Table C.3: Rejection frequencies of Delta and Fieller methods:

effect of right-tail thickness; n=50.

aX qX qY aY ξX = ξY GE1(X) = GE1(Y ) GE2(X) = GE2(Y ) PDL - GE1 PDL - GE2

5 2.1 5 2.1 10.5 0.04075 0.04096 2.84 10.58

5 1.9 5 1.9 9.5 0.04268 0.04326 4.47 13.99

5 1.7 5 1.7 8.5 0.04524 0.04639 5.19 20.59

5 1.5 5 1.5 7.5 0.0488 0.05084 8.81 24.2

5 1.3 5 1.3 6.5 0.05401 0.05763 13.60 31.96

5 1.1 5 1.1 5.5 0.06230 0.06906 16.88 42.72

5 0.9 5 0.9 4.5 0.07708 0.09155 29.70 56.74

5 0.7 5 0.7 3.5 0.10877 0.15046 36.87 66.55

5 0.5 5 0.5 2.5 0.20464 0.49151 53.75 84.86

Note – PDL stands for the percentage difference of the levels of the Delta and the Fieller-type

method. The results in this table pertain to the percentage difference of the DCS and FCS levels

as the right tails of both distributions gets thicker. The left tails of both distributions are fixed (aX

and aY are fixed) and the right tails gets thicker (with smaller ξX and ξY ). Column 8 reports the

percentage difference associated with the null hypothesis H01: GE1(X) = GE1(Y ) and column 9

reports the percentage difference associated with the null hypothesis H02: GE2(X) = GE2(Y ).
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C.3 Boundedness and width of the confidence intervals

Table C.5: Rejection probabilities and widths of confidence sets

based on the Delta and Fieller-type methods: One-sample problem

n Rejection

Delta

Rejection

Fieller

Bounded Union of two

disjoint sets

Unbounded Width

Fieller

Width

Delta

50 0.3758 0.2616 9841 105 54 1.4339 0.6316

100 0.3211 0.2773 9983 16 1 0.7616 0.6026

200 0.2707 0.258 9998 2 0 0.6324 0.5462

500 0.2219 0.2244 10000 0 0 0.4482 0.4325

1000 0.1764 0.1796 10000 0 0 0.3635 0.3575

2000 0.1626 0.167 10000 0 0 0.2746 0.2726

10000 0.1077 0.1095 10000 0 0 0.1474 0.1472

20000 0.0990 0.1006 10000 0 0 0.1098 0.1097

100000 0.0753 0.0756 10000 0 0 0.0544 0.0544

200000 0.0686 0.0698 10000 0 0 0.0395 0.0395

Note – The coverage rate of the confidence set is equal to 1−(Rejection probability). The results

in this table pertains to the GE2 index with SMX(aX = 1.1, qX = 4.327273). H0: GE2 = 0.71577 .

Table C.6: Rejection probabilities and widths of confidence sets

based on the Delta and Fieller-type methods

n Rejection

Delta

Rejection

Fieller

Bounded Union of two

disjoint sets

Unbounded Width

Fieller

Width

Delta

50 0.1843 0.1161 9955 35 10 0.1031 0.0655

100 0.1666 0.1293 9997 3 0 0.0642 0.0548

200 0.1468 0.1297 9999 1 0 0.0461 0.0436

500 0.1316 0.125 10000 0 0 0.032 0.0313

1000 0.1187 0.1168 10000 0 0 0.0239 0.0237

2000 0.1049 0.1047 10000 0 0 0.0179 0.0179

10000 0.0790 0.0787 10000 0 0 0.0090 0.0090

20000 0.0761 0.0766 10000 0 0.0066

100000 0.0663 0.0663 10000 0 0 0.0032 0.0032

200000 0.0616 0.0617 10000 0 0 0.0023 0.0023

Note – The coverage rate of the confidence set is equal to 1−(Rejection probability). The results in this table pertains

to GE2 index with SMX (aX = 2.8, qX = 1.7) and SMY (aY = 3.8, qY = 1.2855). H0: GE2(X)−GE2(Y ) = 0.05401.
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