McGill University
Department of Economics
Econ 763: Time Series and Financial Econometrics
/ Séries chronologiques et économétrie de la finance
Winter / Hiver 2019
Course outline
(Preliminary)

Professor / Professeur: Jean-Marie Dufour

January- April 2019 / Janvier-avril 2019
Version: January 7, 2019

Documents and other material relevant to the course will be available from my web page:

http://www.jeanmariedufour.com
http://www.jeanmariedufour.org

- **Lecture hours**: Monday 18:05 - 20:55.
- **Exams end on**: Thursday, December 2019.
- **Room**: Leacock 517
- **Office hours**: by appointment
- **Teaching assistants**:

 Masaya Takano [masaya.takano@mail.mcgill.ca]

- **TA sessions**: to be determined
- **e-mail**: jean-marie.dufour@mcgill.ca
The evaluation will be based on three elements (percentage refer to the entire year’s grade):

1. a mid-term exam: 30%;
2. assignments (and possibly a term paper): 30%;
3. a final exam: 40%.

Students will also learn to use the R system to do statistical analysis related to the course.

In accord with McGill University’s Charter of Students’ Rights, students in this course have the right to submit in English or in French any written work that is to be graded.

McGill University values academic integrity. Therefore all students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures (see www.mcgill.ca/students/srr/honest/ for more information).

L’université McGill attache une haute importance à l’honnêteté académique. Il incombe par conséquent à tous les étudiants de comprendre ce que l’on entend par tricherie, plagiat et autres infractions académiques, ainsi que les conséquences que peuvent avoir de telles actions, selon le Code de conduite de l’étudiant et des procédures disciplinaires (pour de plus amples renseignements, veuillez consulter le site www.mcgill.ca/students/srr/honest/).

Class schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Day</th>
<th>Time (18:05-20:55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monday</td>
<td>7 January 2019</td>
</tr>
<tr>
<td>2</td>
<td>Monday</td>
<td>14 January 2019</td>
</tr>
<tr>
<td>3</td>
<td>Monday</td>
<td>21 January 2019</td>
</tr>
<tr>
<td>4</td>
<td>Monday</td>
<td>28 January 2019</td>
</tr>
<tr>
<td>5</td>
<td>Monday</td>
<td>4 February 2019</td>
</tr>
<tr>
<td>6</td>
<td>Monday</td>
<td>11 February 2019</td>
</tr>
<tr>
<td>7</td>
<td>Monday</td>
<td>18 February 2019</td>
</tr>
<tr>
<td>8</td>
<td>Monday</td>
<td>25 February 2019</td>
</tr>
<tr>
<td>9</td>
<td>Monday</td>
<td>4 March 2019</td>
</tr>
<tr>
<td>10</td>
<td>Monday</td>
<td>11 March 2019</td>
</tr>
<tr>
<td>11</td>
<td>Monday</td>
<td>18 March 2019</td>
</tr>
<tr>
<td>12</td>
<td>Monday</td>
<td>25 March 2019</td>
</tr>
<tr>
<td>13</td>
<td>Monday</td>
<td>1 April 2019</td>
</tr>
<tr>
<td>14</td>
<td>Monday</td>
<td>8 April 2019</td>
</tr>
<tr>
<td>15</td>
<td>Monday</td>
<td>15 April 2019</td>
</tr>
</tbody>
</table>
The following textbooks will be used in this course.

Course outline

1. Mathematical preliminaries
 (a) Distribution and quantile functions
 (b) Moments
 (c) Covariances and correlations
 (d) Asymptotic theory
 (e) Hilbert spaces
 (f) Difference equations
 (g) Complex analysis and power series

2. Time series analysis
 (a) Introduction
 (b) Stochastic processes
 i. Basic theory
 ii. Spectral analysis
 (c) Prediction and efficient markets
 (d) Continuous time models
 (e) Testing random walk and predictability
 (f) Nonstationarity
 (g) Building univariate time series models
 (h) Multivariate time series models
 (i) Long memory

3. Financial econometrics
 (a) Introduction: the problems of financial econometrics
 (b) Portfolio theory and the Capital asset pricing model (CAPM)
 (c) Volatility modelling
 i. The role of volatility modelling
 ii. Conditional heteroskedasticity: GARCH and stochastic volatility
 iii. Realized volatility
 (d) Heavy tails: theory and inference
 (e) Factor models
 (f) Dynamic optimization models and GMM
 (g) Quantile methods and value at risk
 (h) Options pricing