ADVANCED ECONOMETRIC THEORY
EXERCISES 12
METHODS OF MOMENTS

1. a) Explain the method of asymptotic least squares.
 b) Under appropriate regularity conditions, describe the asymptotic distribution of
 the asymptotic least squares estimator.

2. Let Y_1, \ldots, Y_n a sample of i.i.d. observations from the exponential family
 \[f(y, \theta) = C(\theta) h(y) \exp \left[Q(\theta) T(y) \right] . \]
 Describe how one could use the method of asymptotic least squares to estimate θ.

3. We have repeated observations Y_{ik}, $i = 1, \ldots, n$, $k = 1, \ldots, K$ of qualitative dis-
 chotomic variables, under K different conditions $x_k = (x_{k1}, \ldots, x_kp)$, $k = 1, \ldots, K$,
 with $K \geq p$. These observations are independent such that
 \[
 P[Y_{ik} = 1] = \frac{1}{1 + \exp(-x_k \theta)} \equiv p_k(\theta),
 P[Y_{ik} = 0] = 1 - p_k(\theta),
 \]
 where $\theta = (\theta_1, \ldots, \theta_p)'$ is a parameter of dimension p.
 a) Write the likelihood function associated with this sample and show that it belongs to the exponential family.
 b) Describe the method of Berkson to estimate θ. Can the Berkson estimator be viewed as an asymptotic least squares estimator? Explain why.

5. Let the linear model

\[Y_i = \sum_{k=1}^{k} X_{ik} b_0 + u_i, i = 1, \ldots, n \]

where \(b_0 = (b_{01}, \ldots, b_{0k})' \) is vector of fixed parameters and the vectors

\[(u_i, X_{i1}, \ldots, X_{ik}, Z_{i1}, \ldots, Z_{iH})', i = 1, \ldots, n \]

are independent with finite second moments. Further, the variables \(Z_i = (Z_{i1}, \ldots, Z_{iH})' \) represent instrumental variables such that

\[E(u_i | Z_i) = 0, V(u_i | Z_i) = \sigma^2_0, i = 1, \ldots, n. \]

a) Describe the instrumental variable estimator \(b_{IV}(A) \) of \(b_0 \) based on \(ZA \), where \(A \) is a selection matrix and \(Z' = [Z_1, \ldots, Z_n] \).

b) Find the asymptotic distribution of \(b_{IV}(A) \). (If necessary, add the required regularity conditions.)

c) Show that an optimal choice for \(A \) is obtained by taking

\[A^* = E(Z'Z)^{-1} E(Z'X). \]

6. a) Describe the generalized method of moments.

b) Describe how an optimal generalized method of moments estimator can be obtained.

References