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Abstract

We study the invariance properties of various test criteria which have been proposed

for hypothesis testing in the context of incompletely specified models, such as models

which are formulated in terms of estimating functions (Godambe, 1960, Ann. Math. Stat.)

or moment conditions and are estimated by generalized method of moments (GMM)

procedures (Hansen, 1982, Econometrica), and models estimated by pseudo-likelihood

(Gouri éroux, Monfort and Trognon, 1984, Econometrica) and M -estimation methods.

The invariance properties considered include invariance to (possibly nonlinear) hypothesis

reformulations and reparameterizations. The test statistics examined include Wald-type,

LR-type, LM-type, score-type, and C���−type criteria. Extending the approach used in
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Dagenais and Dufour (1991, Econometrica), we show first that all these test statistics

except the Wald-type ones are invariant to equivalent hypothesis reformulations (under

usual regularity conditions), but all five of them are not generally invariant to model

reparameterizations, including measurement unit changes in nonlinear models. In other

words, testing two equivalent hypotheses in the context of equivalent models may lead to

completely different inferences. For example, this may occur after an apparently innocuous

rescaling of some model variables. Then, in view of avoiding such undesirable properties,

we study restrictions that can be imposed on the objective functions used for pseudo-

likelihood (or M-estimation) as well as the structure of the test criteria used with estimating

functions and GMM procedures to obtain invariant tests. In particular, we show that

using linear exponential pseudo-likelihood functions allows one to obtain invariant score-

type and C���−type test criteria, while in the context of estimating function (or GMM)

procedures it is possible to modify a LR-type statistic proposed by Newey and West (1987,

Int. Econ. Rev.) to obtain a test statistic that is invariant to general reparameterizations. The

invariance associated with linear exponential pseudo-likelihood functions is interpreted as

a strong argument for using such pseudo-likelihood functions in empirical work.

KEYWORDS: C��� test; Estimating function; Generalized method of moment (GMM);

Hypothesis reformulation; Invariance; Lagrange multiplier test; Likelihood ratio test;

Linear exponential model; M-estimator; Measurement unit; Nonlinear model; Pseudo-

likelihood; Reparameterization; Score test; Testing; Wald test.
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JEL Classification: C3; C12.

1. INTRODUCTION

Model and hypothesis formulation in econometrics and statistics typically involve a

number of arbitrary choices, such as the labelling of i.i.d. observations or the selection

of measurement units. Further, in hypothesis testing, these choices do not affect the

interpretation of the null and the alternative hypotheses. When this is the case, it appears

desirable that statistical inference remain invariant to such choices; see Hotelling (1936),

Pitman (1939), Lehmann (1983, Chapter 3), Lehmann (1986, Chapter 6) and Ferguson

(1967). Among other things, when the way a null hypothesis is written has no particular

interest or when the parameterization of a model is largely arbitrary, it is natural to require

that the results of test procedures do not depend on such choices. This holds, for example,

for standard t and F tests in linear regressions under linear hypothesis reformulations and

reparameterizations. In nonlinear models, however, the situation is more complex.

It is well known that Wald-type tests are not invariant to equivalent hypothesis

reformulations and reparameterizations; see Cox and Hinkley (1974, p. 302), Burguete

et al. (1982, p. 185), Gregory and Veall (1985), Vaeth (1985), Lafontaine and White (1986),

Breusch and Schmidt (1988), Phillips and Park (1988), and Dagenais and Dufour (1991).

For general possibly nonlinear likelihood models (which are treated as correctly specified),

we showed in previous work [Dagenais and Dufour (1991, 1992), Dufour and Dagenais

(1992)] that very few test procedures are invariant to general hypothesis reformulations and

reparameterizations. The invariant procedures essentially reduce to likelihood ratio (LR)

3

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

tests and certain variants of score [or Lagrange multiplier (LM)] tests where the information

matrix is estimated with either an exact formula for the (expected) information matrix or

an outer product form evaluated at the restricted maximum likelihood (ML) estimator.

In particular, score tests are not invariant to reparameterizations when the information

matrix is estimated using the Hessian matrix of the log-likelihood function evaluated

at the restricted ML estimator. Further, C��� tests are not generally invariant to

reparameterizations unless special equivariance properties are imposed on the restricted

estimators used to implement them. Among other things, this means that measurement unit

changes with no incidence on the null hypothesis tested may induce dramatic changes in

the conclusions obtained from the tests and suggests that invariant test procedures should

play a privileged role in statistical inference.

In this paper, we study the invariance properties of various test criteria which have been

proposed for hypothesis testing in the context of incompletely specified models, such

as models which are formulated in terms of estimating functions [Godambe (1960)] –

or moment conditions – and are estimated by generalized method of moments (GMM)

procedures [Hansen (1982)], and models estimated by M-estimation [Huber (1981)] or

pseudo-likelihood methods [ Gouriéroux et al. (1984c,b), Gouriéroux and Monfort (1993)].

For general discussions of inference in such models, the reader may consult White

(1982), Newey (1985), Gallant (1987), Newey and West (1987), Gallant and White (1988),

Gouriéroux and Monfort (1989, 1995), Godambe (1991), Davidson and MacKinnon

(1993), Newey and McFadden (1994), Hall (1999) and Mátyás (1999); for studies of the

4

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

performance of some test procedures based on GMM estimators, see also Burnside and

Eichenbaum (1996) and Podivinsky (1999).

The invariance properties we consider include invariance to (possibly nonlinear) hypothesis

reformulations and reparameterizations. The test statistics examined include Wald-type,

LR-type, LM-type, score-type, and C���-type criteria. Extending the approach used in

Dagenais and Dufour (1991) and Dufour and Dagenais (1992) for likelihood models, we

show first that all these test statistics except the Wald-type ones are invariant to equivalent

hypothesis reformulations (under usual regularity conditions), but all five of them are not

generally invariant to model reparameterizations, including measurement unit changes in

nonlinear models. In other words, testing two equivalent hypotheses in the context of

equivalent models may lead to completely different inferences. For example, this may occur

after an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we study restrictions that can be imposed

on the objective functions used for pseudo-likelihood (or M-estimation) as well as the

structure of the test criteria used with estimating functions and GMM procedures to obtain

invariant tests. In particular, we show that using linear exponential pseudo-likelihood

functions allows one to obtain invariant score-type and C���-type test criteria, while in the

context of estimating function (or GMM) procedures it is possible to modify a LR-type

statistic proposed by Newey and West (1987) to obtain a test statistic that is invariant

to general reparameterizations. The invariance associated with linear exponential pseudo-

likelihood functions can be viewed as a strong argument for using such pseudo-likelihood

functions in empirical work. Of course, the fact that Wald-type tests are not invariant to

5

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

both hypothesis reformulations and reparameterizations is by itself a strong argument to

avoid using this type of procedure (when they are not equivalent to other procedures) and

suggest as well that Wald-type tests can be quite unreliable in finite samples; for further

arguments going in the same direction, see Burnside and Eichenbaum (1996), Dufour

(1997), and Dufour and Jasiak (2001).

In Section 2, we describe the general setup considered, while the test statistics studied are

defined in Section 3. The invariance properties of the available test statistics are studied

in Section 4. In Section 5, we make suggestions for obtaining tests that are invariant to

general hypothesis reformulations and reparameterizations. Numerical illustrations of the

invariance (and noninvariance) properties discussed are provided in Section 6. In Section

7, we consider linear stochastic discount factor model as an empirical example and show

that noninvariant procedures may yield drastically different outcomes depending on the

identifying restrictions imposed. We conclude in Section 8.

2. FRAMEWORK

We consider an inference problem about a parameter of interest � ∈ � ⊆ �p� This

parameter appears in a model which is not fully specified. In order to identify �� we assume

there exist a m × 1 vector score-type function Dn ��	 Zn� where Zn = 
z1� z2� � � � � zn�
′ is a

n × k stochastic matrix such that

Dn ��	 Zn�
p−→

n→� D� ��	 �0� � (2.1)
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D� �·	 �0� is a mapping from � onto �m such that:

D� ��	 �0� = 0 ⇐⇒ � = �0 (2.2)

so the value of � is uniquely determined by D� ��	 �0� � Furthermore, we assume:

√
n Dn ��0	 Zn�

L−→ n → �N 
0� I ��0�� (2.3)

Hn ��0	 Zn� = �

��′ Dn ��0	 Zn�
p−→ n → �J ��0� (2.4)

where I ��0� and J ��0� are m × m and m × p full-column rank matrices.

Typically, such a model is estimated by minimizing with respect to � an expression of the

form

Mn ��� Wn� = Dn ��	 Zn�
′ WnDn ��	 Zn� (2.5)

where Wn is a symmetric positive definite matrix. The method of estimating equations

[Durbin (1960), Godambe (1960, 1991), Basawa et al. (1997)], the generalized method of

moments [Hansen (1982), Hall (2004)], maximum likelihood, pseudo-maximum likelihood,

M-estimation and instrumental variable methods may all be cast in this setup. Under

general regularity conditions, the estimator �̂n so obtained has a normal asymptotic

distribution:

√
n ��̂n − �0�

L−→ n → �N 
0� 
 �W0�� (2.6)
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where


 �W0� = �J ′
0W0J0�

−1
J ′

0W0I0W0J0 �J ′
0W0J0�

−1
� (2.7)

J0 = J ��0� � I0 = I ��0�, W0 = plim
n→�

Wn � det �W0� 
= 0; see Gouriéroux and Monfort (1995,

Ch. 9). Note also that “asymptotic estimation efficiency” arguments suggest one to use Wn =
I−1
n as weighting matrix, where In is consistent estimator of I0.1

If we assume that the number of equations is equal to the number of parameters �m = p� �

a general method for estimating � also consists in finding an estimator �̂n which satisfies

the equation

Dn��̂n	 Zn� = 0� (2.8)

Typically, in such cases, Dn ��	 Zn� is the derivative of an objective function Sn��	 Zn��

which is maximized (or minimized) to obtain �̂n� so that

Dn ��	 Zn� = �Sn ��	 Zn�

��
� Hn ��	 Zn� = �2Sn ��	 Zn�

����′ � (2.9)

In this case,
√

n ��̂n − �0� is asymptotically normal with zero mean and asymptotic variance


D ��0� = [
J ��0�

′ I ��0�
−1 J ��0�

]−1 = (
J ′

0I
−1
0 J0

)−1
� (2.10)

1This “optimal” choice may be infeasible (or far from “efficient”) in finite samples when I0

(or In) is not invertible or “ill-conditioned” (close to non-invertibility). For this reason, we

consider here the general formulation in (2.5), though the weighting matrix I−1
n is allowed

as a special case. Note also that “efficiency” from the estimation viewpoint is not in general

equivalent to efficiency from the testing viewpoint (in terms of power), so it is not clear

Wn = I−1
n is an optimal choice for the purpose of hypothesis testing.
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Obviously, condition (2.8) is entailed by the minimization of Mn ��� when m = p� It is

also interesting to note that problems with m > p can be reduced to cases with m = p

through an appropriate redefinition of the score-type function Dn ��	 Zn� � so that the

characterization (2.8) also covers most classical asymptotic estimation methods. A typical

list of methods is the following.

a) Maximum likelihood. In this case, the model is fully specified with log-likelihood function

Ln ��	 Zn� and score function

Dn ��	 Zn� = 1
n

�

��
Ln ��	 Zn� � (2.11)

b) Generalized method of moments �GMM�. � is identified through a m × 1 vector of

conditions of the form: E 
ht ��	 zt�� = 0� t = 1� � � � � n� Then one considers the sample

analogue of this mean,

hn ��� = 1
n

n∑
t=1

ht ��	 zt� � (2.12)

and the quadratic form

Mn ��� = hn ���′ Wnhn ��� (2.13)

where Wn is a symmetric positive definite matrix. In this case, the score-type function is:

Dn ��	 Zn� = 2
�hn ���′

��
Wnhn ��� � (2.14)
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c) M-estimator. �̂n is defined by minimizing (or maximizing) an objective function M̄n of the

form:

M̄n ��	 Zn� = 1
n

n∑
t=1

� ��	 zt� � (2.15)

The score function has the following form:

Dn ��	 Zn� = �M̄n

��
��	 Zn� = 1

n

n∑
t=1

�

��
� ��	 zt� � (2.16)

3. TEST STATISTICS

Consider now the problem of testing

H0 � � ��� = 0 (3.1)

where � ��� is a p1 × 1 continuously differentiable function of �, 1 ≤ p1 ≤ p and the p1 × p

matrix

P ��� = ��

��′ (3.2)

has full row rank (at least in an open neighborhood of �0). Let �̂n be the unrestricted

estimator obtained by minimizing Mn ���, and �̂0
n the corresponding constrained estimator

under H0�

At this stage, it is not necessary to specify closely the way the matrices I ��0� and J ��0�

are estimated. We will denote by Î0 and Ĵ0 or by Î and Ĵ the corresponding estimated

10
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matrices depending on whether they are obtained with or without the restriction � ��� = 0�

In particular, if

Dn ��	 Zn� = 1
n

n∑
t=1

ht ��	 zt� � (3.3)

standard definitions of Î ��� and Ĵ ��� would be

Î ��� = 1
n

n∑
t=1

ht ��	 zt� ht ��	 zt�
′ � Ĵ ��� = �Dn

��′ ��� = Hn ��	 Zn� � (3.4)

where � can be replaced by an appropriate estimator. For M -estimators, we have

ht ��	 zt� = �
��

� ��	 zt� the derivative of the (pseudo-)likelihood associated with an

individual observation.

For Î ���, other estimators are also widely used. Here, we shall consider general estimators

of the form

Î ��� =
n∑

s=1

n∑
t=1

wst�n� hs ��	 zs� ht ��	 zt�
′ = h ��	 Zn� WI�n�h ��	 Zn�

′ (3.5)

where WI�n� = [
wst�n�

]
is a n × n matrix of weights (which depend of the sample size n

and, possibly, on the data) and

h ��	 Zn� = [
h1 ��	 z1� � h2 ��	 z2� � � � � � hn ��	 zn�

]
� (3.6)

For example, a “mean corrected” version of Î ��� may be obtained on taking WI�n� =
1
n
�In − 1

n
�n�

′
n�� where In is the identity matrix of order n and �n = �1� 1� � � � � 1�′� which yields

Î ��� = 1
n

n∑
t=1

[
ht ��	 zt� − h���

][
ht ��	 zt� − h���

]′
(3.7)
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where h��� = 1
n

∑n
t=1 ht ��	 zt� � Similarly, so-called “heteroskedasticity-autocorrelation

consistent (HAC)” covariance matrix estimators can usually be rewritten in the form (3.5).

In most cases, such estimators are defined by a formula of the type:

Î ��� =
n−1∑

j=−n+1

k̄ �j/Bn� �̂�j� �� (3.8)

where k̄ �·� is a kernel function, Bn is a bandwidth parameter (which depends on the sample

size and, possibly, on the data), and

�̂�j� �� =
{

1
n

∑n
t=j+1 ht ��	 zt� ht−j

(
�	 zt−j

)′
� if j ≥ 0�

1
n

∑n
t=−j+1 ht+j

(
�	 zt+j

)
ht ��	 zt�

′ � if j < 0�
(3.9)

For further discussion of such estimators, the reader may consult Newey and West

(1987), Andrews (1991), Andrews and Monahan (1992), Hansen (1992), and Cushing and

McGarvey (1999).

In this context, analogues of the Wald, LM, score and C ��� test statistics can be

shown to have asymptotic null distributions without nuisance parameters, namely �2 �p1�

distributions. On assuming that the referenced inverse matrices do exist, these test criteria

can be defined as follows: (a) the Wald-type statistic,

W ��� = n ���̂n�
′[P̂(Ĵ ′Î−1Ĵ

)−1
P̂ ′ ]−1

���̂n� (3.10)

where P̂ = P��̂n�, Î = Î��̂n� and Ĵ = Ĵ ��̂n� (b) the score-type statistic,

S ��� = n Dn��̂
0
n	 Zn�

′Î−1
0 Ĵ0

(
Ĵ ′

0Î
−1
0 Ĵ0

)−1
Ĵ ′

0Î
−1
0 Dn��̂

0
n	 Zn� (3.11)
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where Î0 = Î��̂0
n� and Ĵ0 = Ĵ ��̂0

n�	 (c) the Lagrange-multiplier-type (LM-type) statistic,

LM ��� = n �̂′
nP̂0

(
Ĵ ′

0Î
−1
0 Ĵ0

)−1
P̂ ′

0�̂n (3.12)

where P̂0 = P��̂0
n� and �̂n is the Lagrange multiplier in the corresponding constrained

optimization problem;

(d) the C ���-type statistic,

PC��̃0
n	 �� = n Dn

(
�̃0

n	 Zn

)′
W̃0Dn

(
�̃0

n	 Zn

)
(3.13)

where �̃0
n is any root-n consistent estimator of � that satisfies ���̃0

n� = 0� and

W̃0 ≡ Ĩ−1
0 J̃0

(
J̃ ′

0Ĩ
−1
0 J̃0

)−1
P̃ ′

0

[
P̃0

(
J̃ ′

0Ĩ
−1
0 J̃0

)−1
P̃ ′

0

]−1
P̃0

(
J̃ ′

0Ĩ
−1
0 J̃0

)−1
J̃ ′

0Ĩ
−1
0

with P̃0 = P��̃0
n�� Ĩ0 = Î��̃0

n� and J̃0 = Ĵ ��̃0
n�� This C���-type statistic can viewed as the

extension

The above Wald-type and score-type statistics were discussed by Newey and West (1987)

in the context of GMM estimation, and for pseudo-maximum likelihood estimation by

Trognon (1984). The C ��� -type statistic is given by Davidson and MacKinnon (1993, p.

619). Of course, LR-type statistics based on the difference of the maxima of the objective

function Sn ��	 Zn� have also been considered in such contexts:

LR ��� = Sn

(
�̂n	 Zn

)− Sn

(
�̂0

n	 Zn

)
� (3.14)

It is well known that, in general, this difference is distributed as a mixture of independent

chi-square with coefficients depending upon nuisance parameters [see, for example,
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Trognon (1984) and Vuong (1989)]. Nevertheless, there is one “LR-type” test statistic whose

distribution is asymptotically pivotal with a chi-square distribution, namely the D statistic

suggested by Newey and West (1987):

DNW ��� = n
[
Mn

(
�̂0

n� Ĩ0

)− Mn

(
�̂n� Ĩ0

)]
(3.15)

where

Mn

(
�� Ĩ0

) = Dn ��	 Zn�
′ Ĩ−1

0 Dn ��	 Zn� � (3.16)

Ĩ0 is a consistent estimator of I ��0�, �̂n minimizes Mn��� Ĩ0� without restriction and �̂0
n

minimizes Mn��� Ĩ0� under the restriction � ��� = 0� Note, however, that this “LR-type”

statistic is more accurately viewed as a score-type statistic: if Dn is the derivative of some

other objective function (e.g., a log-likelihood function), the latter is not used as the

objective function but replaced by a quadratic function of the “score” Dn�

Using the constrained minimization condition,

Hn

(
�̂0

n	 Zn

)′
Ĩ−1

0 Dn

(
�̂0

n	 Zn

) = P
(
�̂0

n

)′
�̂n� (3.17)

we see that

S ��� = LM ��� � (3.18)

i.e., the score and LM statistics are identical in the present circumstances. Further, it is

interesting to observe that the score, LM and C ���-type statistics given above may all be
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viewed as special cases of a more general C ���-type statistic obtained by considering the

generalized “score-type” function:

s
(
�̃0

n� Wn

) = √
n Q̃ 
Wn� Dn

(
�̃0

n	 Zn

)
(3.19)

where �̃0
n is consistent restricted estimate of �0 such that ���̃0

n� = 0 and
√

n��̃0
n − �0� is

asymptotically bounded in probability,

Q̃ 
Wn� ≡ P̃0�J̃
′
0WnJ̃0�

−1J̃ ′
0Wn� (3.20)

P̃0 = P
(
�̃0

n

)
� J̃0 = Ĵ

(
�̃0

n

)
� and Wn is a symmetric positive definite (possibly random) m × m

matrix such that

plim
n→�

Wn = W0� det �W0� 
= 0� (3.21)

Under standard regularity conditions, we have:

s
(
�̃0

n	 Zn

) L−→
n→� N

[
0� Q ��0� I ��0� Q ��0�

′] (3.22)

where

Q ��0� = plim
n→�

Q̃ 
Wn� = P ��0�
[
J ��0�

′ W0J ��0�
]−1

J ��0�
′ W0 (3.23)

and rank 
Q ��0�� = p1� This suggests the following generalized C ��� criterion:

PC
(
�̃0

n	 �� Wn

) = n Dn

(
�̃0

n	 Zn

)′
Q̃ 
Wn�

′ {Q̃ 
Wn� Ĩ0Q̃ 
Wn�
′ }−1

Q̃ 
Wn� Dn

(
�̃0

n	 Zn

)
(3.24)
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where Ĩ0 = Î��̃0
n�� Under general regularity conditions, the asymptotic distribution of PC

(
�̃0

n;

�� Wn

)
is �2 �p1� under H0�

2 PC��̃0
n	 �� Wn� can be viewed as the extension of the classical

procedure of Neyman (1959) to general estimating functions and GMM setups, and

it includes as special cases various other C���-type statistics proposed in the statistical

and econometric literatures.3 On taking Wn = Ĩ−1
0 � as suggested by asymptotic estimation

efficiency arguments, PC��̃0
n	 �� Wn� reduces to PC��̃0

n	 �� in (3.13). When the number of

equations equals the number of parameters �m = p� � we have Q̃ 
Wn� = P̃0J̃
−1
0 and PC��̃0

n	

�� Wn� does not depend on the choice of Wn:

PC��̃0
n	 �� Wn� = PC

(
�̃0

n	 �
) = Dn

(
�̃0

n	 Zn

)′
�J̃−1

0 �′P̃ ′
0

[
P̃0

(
J̃ ′

0Ĩ
−1
0 J̃0

)−1
P̃ ′

0

]−1
P̃0J̃

−1
0 Dn

(
�̃0

n	 Zn

)
�

In particular, this will be the case if Dn ��	 Zn� is the derivative vector of a (pseudo)

log-likelihood function. Finally, for m ≥ p� when �̃0
n is obtained by minimizing Mn ��� =

Dn ��	 Zn�
′ Ĩ−1

0 Dn ��	 Zn� subject to � ��� = 0� we can write �̃0
n ≡ �̂0

n and PC
(
�̃0

n	 �� Wn

)
is

identical to the score (or LM)-type statistic suggested by Newey and West (1987). Since the

statistic PC
(
�̃0

n	 �� Wn

)
is quite comprehensive, it will be convenient for establishing general

invariance results.

2The regularity conditions and a rigorous proof of the latter assertion appear in the working

paper version of this article Dufour et al. (2013); see also Dufour et al. (2015).

3For further discussion of C��� tests, the reader may consult Bernshtein (1981), Basawa

(1985), Ronchetti (1987), Smith (1987), Berger and Wallenstein (1989), Dagenais and

Dufour (1991), Davidson and MacKinnon (1991, 1993), Kocherlakota and Kocherlakota

(1991), Bera and Bilias (2001), and Dufour and Valéry (2009).
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4. INVARIANCE

Following Dagenais and Dufour (1991), we will consider two types of invariance properties:

(1) invariance with respect to the formulation of the null hypothesis, and (2) invariance

with respect to reparameterizations.

4.1. Hypothesis Reformulation

Let

�0 = �� ∈ � � � ��� = 0� (4.1)

and � be the set of differentiable functions �̄ � � → �m such that

{
� ∈ � � �̄ ��� = 0

} = �0� (4.2)

A test statistic is invariant with respect to � if it is the same for all � ∈ �� It is

obvious the LR-type statistics LR ��� and DNW ��� (when applicable) are invariant to such

hypothesis reformulations because the optimal values of the objective function (restricted or

unrestricted) do not depend on the way the restrictions are written. Now, a reformulation

does not affect Î � Ĵ � Î0 and Ĵ0� The same holds for Ĩ0 and J̃0 provided the restricted estimator

�̃0
n used with C ��� tests does not depend on which function � ∈ � is used to obtain it.

However, P̂� �̂n and �
(
�̂n

)
change� Following Dagenais and Dufour (1991), if �̄ ∈ �� we

have:

P̄ ��� = ��̄

��′ = P̄1 ��� G ��� � P ��� = ��

��′ = P1 ��� G ��� � (4.3)
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where P̄1 and P1 are two p1 × p1 invertible functions and G ��� is a p1 × p full row-

rank matrix. Since P̄0′
1 �̄n = P̂0′

1 �̂n where P̄0
1 = P̄1��̂

0
n�� P̂0

1 = P1��̂
0
n� and �̄n is the Lagrange

multiplier associated with �̄� we deduce that all the statistics, except the Wald-type

statistics, are invariant with respect to a reformulation. This leads to the following

proposition.

Proposition 4.1 (Invariance to hypothesis reformulations). Let � be a family of p1 × 1

continuously differentiable functions of � such that ��
��′ has full row rank when � ��� =

0 �1 ≤ p1 ≤ p� � and

� ��� = 0 ⇐⇒ �̄ ��� = 0� ∀�� �̄ ∈ �� (4.4)

Then, T ��� = T
(
�̄
)

where T stands for any one of the test statistics S ��� � LM ��� � PC��̃0
n	

��� LR ��� � DNW ��� and PC��̃0
n	 �� Wn� defined in (3.11)–(3.15) and (3.24).

Note that the invariance of the S ��� � LM ��� � LR ��� and DNW ��� statistics to hypothesis

reformulations has been pointed out by Gouriéroux and Monfort (1989) for mixed-form

hypotheses.

4.2. Reparameterization

Let ḡ be a one-to-one differentiable transformation from � ⊆ �p to �∗ ⊆ �p � �∗ =
ḡ ��� � ḡ represents a reparameterization of the parameter vector � to a new one �∗� The

latter is often determined by a one-to-one transformation of the data Zn∗ = g �Zn� � as
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occurs for example when variables are rescaled (measurement unit changes). But it may

also represent a reparameterization without any variable transformation. Let k = ḡ−1 be

the inverse function associated with ḡ �

k ��∗� = ḡ−1 ��∗� = �� (4.5)

Set

Ḡ ��� = �ḡ′

��
and K ��∗� = �k

��′∗
� (4.6)

Since k 
ḡ ���� = � and ḡ 
k ��∗�� = �∗� we have by the chain rule of differentiation:

K 
ḡ ���� Ḡ ��� = Ip and Ḡ 
k ��∗�� K ��∗� = Ip� ∀�∗ ∈ �∗� ∀� ∈ �� (4.7)

Let

�∗ ��∗� = �
[
ḡ−1 ��∗�

]
� (4.8)

Clearly,

�∗ ��∗� = 0 ⇔ � ��� = 0� (4.9)

and H∗
0 � �∗ ��∗� = 0 is an equivalent reformulation of H0 � � ��� = 0 in terms of �∗� We

shall call �∗ ��∗� = 0 the canonical reformulation of � ��� = 0 in terms of �∗. Other (possibly

more “natural”) reformulations are of course possible, but the latter has the convenient

property that �∗ ��∗� = � ��� � If a test statistic is invariant to reparameterizations when the

null hypothesis is reformulated as �∗ ��∗� = 0, we will say it is canonically invariant.
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By the invariance property of Proposition 1, it will be sufficient for our purpose to study

invariance to reparameterizations for any given reformulation of the null hypothesis in

terms of �∗� From the above definition of �∗ ��∗� � it follows that

P∗ ��∗� ≡ ��∗

��′∗
= ��

��′
��

��′∗
= P 
k ��∗�� K ��∗� = P ��� K 
ḡ ���� � (4.10)

We need to make an assumption on the way the score-type function Dn ��	 Zn� changes

under a given reparameterization. We will consider two cases. The first one consists in

assuming that Dn ��	 Zn� = ∑n
t=1 ht ��	 zt� /n as in (3.3) where the values of the scores are

unaffected by the reparameterization, but are simply reexpressed in terms of �∗ and zt∗

(invariant scores):

ht ��∗	 zt∗� = ht ��	 zt� � t = 1� � � � � n� (4.11)

where Zn∗ = g �Zn� and �∗ = ḡ ��� � The second one is the one where Dn ��	 Zn� can be

interpreted as the derivative of an objective function.

Under condition (4.11), we see easily that

Hn∗ ��∗	 Zn∗� = �Dn∗ ��∗	 Zn∗�
��′∗

= Hn ��	 Zn� K ��∗� = Hn ��	 Zn� K 
ḡ ���� � (4.12)

Further the functions Î ��� and Ĵ ��� in (3.4) are then transformed in the following way:

Î∗ ��∗� = Î ��� � Ĵ∗ ��∗� = Ĵ ��� K 
ḡ ���� � (4.13)

If Î ��� and Ĵ ��� are defined as in (3.4) if Wn∗ = Wn and if �̃0
n is equivariant with respect to ḡ

[i.e., �̃0
n∗ = ḡ

(
�̃0

n

)
], it is easy to check that the generalized C ��� statistic defined in (3.24) is
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invariant to the reparameterization �∗ = ḡ ��� � This suggests the following general sufficient

condition for the invariance of C ��� statistics.

Proposition 4.2 (C��� canonical invariance to reparameterizations: invariant score case).

Let �∗ ��∗� = �
[
ḡ−1 ��∗�

]
� and suppose the following conditions hold:

(a) �̃0
n∗ = ḡ��̃0

n��

(b) Dn∗��̃0
n∗	 Zn∗� = Dn��̃

0
n	 Zn��

(c) Ĩ0∗ = Ĩ0 and J̃0∗ = J̃0K̃�

(d) Wn∗ = Wn�

where Ĩ0� J̃0 and Wn are defined as in (3.24), and K̃ = K��̃0
n∗� is invertible. Then

PC∗��̃
0
n∗	 �∗� Wn∗� ≡ nD̃′

n∗Q̃
′
0∗
(
Q̃′

0∗Ĩ0∗Q̃0∗
)−1

Q̃0∗D̃n∗ = PC��̃0
n	 �� Wn�

where D̃n∗ = Dn∗��̃0
n∗	 Zn∗�� Q̃0∗ = P̃0∗

(
J̃ ′

0∗Wn∗J̃0∗
)−1

J̃ ′
0∗Wn∗� P̃0∗ = P∗��̃0

n∗� and P∗ ��∗� =
��∗/��′

∗�

It is clear that the estimators �̂n and �̂0
n satisfy the equivariance condition, i.e., �̂n∗ =

ḡ
(
�̂n

)
and �̂0

n∗ = ḡ
(
�̂0

n

)
� Consequently, the above invariance result also applies to score

(or LM) statistics. It is also interesting to observe that W∗ ��∗� = W ��� � This holds,

however, only for the special reformulation �∗ ��∗� = �
[
ḡ−1 ��∗�

] = 0� not for all equivalent
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reformulations �∗ ��∗� = 0� On applying Proposition 1, this type of invariance holds for the

other test statistics. These observations are summarized in the following proposition.

Theorem 4.3 (Test invariance to reparameterizations and general hypothesis reformulations:

invariant score case). Let �∗ � �∗ → � be any continuously differentiable function of �∗ ∈ �∗

such that �∗ �ḡ ���� = 0 ⇔ � ��� = 0� let m = p and suppose

(a) Dn∗ �ḡ ��� 	 Zn∗� = Dn ��	 Zn� �

(b) Î∗ 
ḡ ���� = Î ��� and Ĵ∗ 
ḡ ���� = Ĵ ��� K 
ḡ ���� �

where K ��∗� = �ḡ−1 ��∗� /��′
∗� Then, provided the relevant matrices are invertible, we have

T ��� = T∗ ��∗� (4.14)

where T stands for any one of the test statistics S ��� � LM ��� � LR ��� and DNW ��� � If �̂0
n∗ =

ḡ��̂0
n�� we also have

PC∗��̃
0
n∗	 �∗� = PC��̃0

n	 ��� (4.15)

If �∗ ��� = �
[
ḡ−1 ���

]
� the Wald statistic is invariant: W∗ ��∗� = W ��� �

Cases where (4.12) holds only have limited interest because they do not cover problems

where Dn is the derivative of an objective function, as occurs for example when M-

estimators or (pseudo) maximum likelihood methods are used :

Dn ��	 Zn� = �Sn ��	 Zn�

��
� (4.16)
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In such cases, one would typically have :

Sn∗ ��∗	 Zn∗� = Sn ��	 Zn� + � �Zn∗�

where � �Zn∗� may be a function of the Jacobian of the transformation Zn∗ = g �Zn� � To

deal with such cases, we thus assume that m = p� and

Dn∗ ��∗	 Zn∗� = K ��∗�
′ Dn ��	 Zn� = K 
ḡ ����′ Dn ��	 Zn� � (4.17)

From (2.3) and (4.17), it then follows that

√
n Dn∗ ��0∗	 Zn∗�

L−→
n→� N 
0� I∗ ��0∗�� (4.18)

where �0∗ = ḡ ��0� and

I∗ ��∗� = K ��∗�
′ I 
k ��∗�� K ��∗� = K 
ḡ ����′ I ��� K 
ḡ ���� � (4.19)

Further,

Hn∗ ��∗	 Zn� = K 
ḡ ����′ Hn ��	 Zn� K 
ḡ ���� +
p∑

i=1

Dni ��	 Zn� K
�1�
i· 
ḡ ���� (4.20)

where Dni ��	 Zn�, i = 1� � � � � p� are the coordinates of Dn ��	 Zn� and

K
�1�
i· ��∗� = �2�i

��∗��′∗
��∗� = �2ki

��∗��′∗
��∗�� (4.21)

By a set of arguments analogous to those used in Dagenais and Dufour (1991), it appears

that all the statistics [except the LR-type statistic] are based upon Hn and so they are

sensitive to a reparameterization, unless some specific estimator of J is used. At this level of
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generality, the following results can be presented using the following notations : Î � Ĵ � P̂ are

the estimated matrices for a parameterization in � and Î∗� Ĵ∗� P̂∗ are the estimated matrices

for a parameterization in �∗� The first proposition below provides an auxiliary result on

the invariance of generalized C��� statistics for the canonical reformulation �∗ ��∗� = 0�

while the following one provides the invariance property for all the statistics considered

and general equivalent reparameterizations and hypothesis reformulations.

Proposition 4.4 (C��� canonical invariance to reparameterizations). Let �∗ ��∗� =
�
[
ḡ−1 ��∗�

]
� and suppose the following conditions hold:

(a) �̃0
n∗ = ḡ��̃0

n��

(b) Dn∗��̃0
n∗	 Zn∗� = K

[
�̃0

n∗
]′

D��̃0
n	 Zn��

(c) Ĩ0∗ = K̃′Ĩ0K̃, J̃0∗ = K̃′J̃0K̃�

(d) Wn∗ = K̃−1Wn

(
K̃−1

)′
�

where Ĩ0� J̃0 and Wn are defined as in (3.24), and K̃ = K��̃0
n∗�� Then, provided the relevant

matrices are invertible,

PC∗��̃
0
n∗	 �∗� Wn∗� = PC��̃0

n	 �� Wn��

Theorem 4.5 (Test invariance to reparameterizations and general equivalent hypothesis

reformulations). Let �∗ � �∗ → � be any continuously differentiable function of �∗ ∈ �∗ such

that �∗ 
ḡ ���� = 0 ⇔ � ��� = 0� let m = p and suppose:

(a) Dn∗ �ḡ ��� 	 Zn∗� = K 
ḡ ����′ Dn ��	 Zn� �
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(b) Î∗ 
ḡ ���� = K 
ḡ ����′ Î ��� K 
ḡ ���� �

(c) Ĵ∗ 
ḡ ���� = K 
ḡ ����′ Ĵ ��� K 
ḡ ���� �

where K ��∗� = �ḡ−1 ��� /��′
∗� Then, provided the relevant matrices are invertible, we have

T ��� = T∗ ��∗� (4.22)

where T stands for any one of the test statistics S ��� � LM ��� � LR ��� and DNW ��� � If �̃0
n∗ =

ḡ
(
�̃0

n

)
� we also have

PC∗
(
�̃0

n∗	 �∗
) = PC

(
�̃0

n	 �
)
� (4.23)

and, in the case where �∗ ��� = �
[
ḡ−1 ���

]
�

W∗ ��∗� = W ��� �

It is of interest to note here that condition �a� and �b� of the latter theorem will be

satisfied if Dn ��	 Zn� = 1
n

∑n
t=1 ht ��	 zt� and each individual “score” gets transformed after

reparameterization according to the equation

ht∗
(
ḡ ��� 	 zt∗

) = K 
ḡ ����′ ht ��	 zt� � t = 1� � � � � � n� (4.24)

where Dn∗
(
ḡ ��� 	 Zn∗

) = 1
n

∑n
t=1 ht∗

(
ḡ ��� 	 zt∗

)
� Consequently, in such a case, any estimator

Î ��� of the general form (3.5) will satisfy �b� provided the matrix WI�n� remains invariant

under reparameterizations. This will be the case, in particular, for most HAC estimators

of the form (3.8) as soon as the bandwidth parameter Bn only depends on the sample
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size n� However, this may not hold if Bn is data-dependent [as considered in Andrews and

Monahan (1992)].

Despite the apparent “positive nature” of the invariance results presented in this section,

the main conclusion is that none of the proposed test statistics is invariant to general

reparameterizations, especially when the score-type function is derived from an objective

function. This is due, in particular, to the behaviour of moment (or estimating function)

derivatives under nonlinear reparameterizations. As shown in Dagenais and Dufour (1991),

this type of problem is already apparent in fully-specified likelihood models where LM

statistics are not invariant to general reparameterizations when the covariance matrix

is estimated through the Hessian of the log-likelihood function (i.e., derivatives of the

score function). When the true likelihood is not available, test statistics must be modified

to control the asymptotic level of the test. Reparameterizations involve derivatives of

score-type function (or pseudo-likelihood second derivatives), even in the case of LR-

type statistics (see Theorem 2). In other words, the adjustments required to deal with an

incompletely specified model (no likelihood function) make invariance more difficult to

achieve, and building valid invariant test procedures becomes a challenge.

5. INVARIANT TEST CRITERIA

In this section, we propose two ways of building invariant test statistics. The first one is

based on modifying the LR-type statistics proposed by Newey and West (1987) for GMM
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setups, while the second one exploits special properties of the linear exponential family in

pseudo-maximum likelihood models.4

5.1. Modified Newey–West LR-type Statistic

Consider the LR-type statistic

DNW ��� = n
[
Mn

(
�̂0

n� Ĩ0

)− Mn

(
�̂n� Ĩ0

)]

where Mn��� Ĩ0� = Dn ��	 Zn�
′ Ĩ−1

0 Dn ��	 Zn� � proposed by Newey and West (1987, hereafter

NW). In this statistic, Ĩ0 is any consistent estimator of the covariance matrix I ��0� which is

typically a function of a “preliminary” estimator �̄n of � � Ĩ0 = Î
(
�̄n

)
� The minimized value

of the objective function Mn��� Ĩ0� is not invariant to general reparameterizations unless

special restrictions are imposed on the covariance matrix estimator Ĩ0�

However, there is a simple way of creating the appropriate invariance as soon as the

function Î ��� is a reasonably smooth function of �� Instead of estimating � by minimizing

Mn��� Ĩ0�� estimate � by minimizing Mn

(
�� Î ���

)
� For example, such an estimation method

4The reader may note that further insight can be gained on the invariance properties of

test statistics by using differential geometry arguments; for some applications to statistical

problems, see Bates and Watts (1980), Amari (1990), Kass and Voss (1997), and Marriott

and Salmon (2000). Such arguments may allow one to propose reparameterizations and

“invariant Wald tests”; see, for example, Bates and Watts (1981), Hougaard (1982), Le Cam

(1990), Critchley et al. (1996) , and Larsen and Jupp (2003) in likelihood models. As of

now, such procedures tend to be quite difficult to design and implement, and GMM setups

have not been considered. Even though this is an interesting avenue for future research,

simplicity and generality considerations have led us to focus on procedures which do not

require adopting a specific parameterization.
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was studied by Hansen et al. (1996). When the score vector Dn and the parameter vector �

have the same dimension �m = p�� the unrestricted objective function will typically be zero


Dn��̂n	 Zn� = 0�, so the statistic reduces to DNW ��� = nMn��̂
0
n� Ĩ0�� When m > p, this will

typically not be the case.

Suppose now the following conditions hold:

Dn∗ �ḡ ��� � Zn∗� = K 
ḡ ����′ Dn ��	 Zn� � (5.1)

Î∗ �ḡ ���� = K 
ḡ ����′ Î ��� K 
ḡ ���� � (5.2)

Then, for �∗ = ḡ ��� �

Mn∗
(
�∗� Î∗ ��∗�

) ≡ Dn∗
(
ḡ ��� � Zn∗

)′
Î∗ �ḡ ����−1 Dn∗

(
ḡ ��� � Zn∗

)
= Dn ��	 Zn�

′ Î ��� Dn ��	 Zn� � (5.3)

Consequently, the unrestricted minimal value Mn��̂n	 Î��̂n�� and the restricted one Mn��̂
0
n	

I��̂0
n�� so obtained will remain unchanged under the new parameterization, and the

corresponding J and the LR-type statistics, i.e.

J = nMn

(
�̂n	 Î��̂n�

)
� (5.4)

D̄��� = n
[
Mn

(
�̂0

n	 Î��̂0
n�
)− Mn

(
�̂n	 Î��̂n�

)]
� (5.5)

are invariant to reparameterizations of the type considered in (4.17)–(4.19). Under standard

regularity conditions on the convergence of Dn ��	 Zn� and Î ��� as n → � (continuity,
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uniform convergence), it is easy to see that D̄ and DNW are asymptotically equivalent

(at least under the null hypothesis) and so have the same asymptotic �2 �p1� distribution.5

5.2. Pseudo-maximum Likelihood Methods

5.2.1. PML Methods

Consider the problem of making inference on the parameter which appears in the mean of

an endogenous G × 1 random vector yt conditional to an exogenous random vector xt:

E �yt � xt� = f �xt	 �� ≡ ft ��� � V �yt � xt� = �0�xt� (5.6)

where ft��� is a known function and � is the parameter of interest. (5.6) provides a non-

linear generalized regression model with unspecified variance. Even if a likelihood function

with a finite number of parameters is not available for such a semi-parametric model, �

can be estimated through a pseudo-maximum likelihood technique (PML) which consists in

maximizing a chosen likelihood as if it were the true undefined likelihood; see Gouriéroux

et al. (1984c).6 In particular, it is shown in the latter reference that this pseudo-likelihood

5The regularity conditions and a proof of the asymptotic distribution are given in our

working paper [Dufour et al. (2013)].

6For further discussion of such methods, the reader may consult: Gong and Samaniego

(1981), Gouriéroux et al. (1984a), Trognon (1984), Bourlange and Doz (1988), Trognon

and Gouriéroux (1988) , Gouriéroux and Monfort (1993), Crépon and Duguet (1997) and

Jorgensen (1997).
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must belong to the specific class of linear exponential distributions adapted for the mean.

These distributions have the following general form:

l�y	 �� = exp 
A��� + B�y� + C���y� (5.7)

where � ∈ �G and C��� is a row vector of size G� The vector � is the mean of y if

�A

��
+ �C

��
� = 0�

Irrespective of the true data generating process, a consistent and asymptotically normal

estimator of � can be obtained by maximizing

n∏
t=1

exp
{
A
(
ft���

)+ B�yt� + C
(
ft ���

)
yt

}
(5.8)

or equivalently through the following equivalent programme:

max
�

n∑
t=1

{
A
(
ft ���

)+ C
(
ft ���

)
yt

}
with

�A

��
+ �C

��
� = 0� (5.9)

The class of linear exponential distributions contains most of the classical statistical models,

such as the Gaussian model the Poisson model, the Binomial model, the Gamma model,

the negative Binomial model, etc. The constraint in the programme (5.9) ensures that

the expectation of the linear exponential pseudo-distribution is �. The pseudo-likelihood

equations have an orthogonal condition form:

Dn��� =
n∑

t=1

�f ′
t

��

�C

��
�ft�����yt − ft���� = 0 � (5.10)
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The PML estimator solution of these first order conditions is consistent and asymptotically

normal N
[
0� �J ′I−1J�−1

]
� and we can write:

J ��� = Ex

{(
�f ′

t

��

)[
�C

��

(
ft ���

)](�f ′
t

��

)′}
� (5.11)

I ��� = Ex

{(
�f ′

t

��

)[(
�C

��

(
ft ���

))
�0

(
�C

��

(
ft ���

))](�f ′
t

��

)′}
� (5.12)

These matrices can be estimated by:

Ĵ = 1
n

n∑
t=1

(
�f ′

t

��

(
�̂
)) [�C

��

(
ft��̂�

)](�f ′
t

��

(
�̂
))′

� (5.13)

Î = 1
n

n∑
t=1

St

(
�̂
)
St

(
�̂
)′

� (5.14)

where

St

(
�̂
) =

(
�f ′

t

��

(
�̂
)) [�C

��

(
ft��̂�

)] (
y − ft��̂�

)
� (5.15)

Since �C
��

(
ft��̂�

)
and yt − ft��̂� are invariant to reparameterizations, Î and Ĵ are modified

only through �f ′
t

��
� Further,

f ∗
t ��∗� = f ∗

t 
ḡ ���� = ft ��� �
�f ∗

t

��′∗
=
(

�f ∗
t

��′

)(
��

��′∗

)
=
(

�ft

��′

)
K 
ḡ ���� (5.16)

and

Î∗ = K
[
ḡ��̂�

]′
ÎK
[
ḡ��̂�

]
� Ĵ∗ = K

[
ḡ��̂�

]′
ĴK
[
ḡ��̂�

]
� (5.17)

The Lagrange, score and C ���-type pseudo-asymptotic tests are then invariant to a

reparameterization, though of course Wald tests will not be generally invariant to

hypothesis reformulations. Consequently, this provides a strong argument for using pseudo
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true densities in the linear exponential family (instead of other types of densities) as a basis

for estimating parameters of conditional means when the error distribution has unknown

type.

The estimation of the J matrix could be obtained through direct second derivative calculus

of the objective function. For example, when yt is univariate �G = 1�� we have:

J̃ = 1
n

n∑
t=1

�ft

��
��̂�

�C

��
�ft��̂��

(
�ft

��
��̂�

)′

− 1
n

n∑
t=1

�ft

��
��̂�

�2C

��2
�ft��̂��

(
�ft

��
��̂�

)′

�yt − ft����

−1
n

n∑
t=1

�2ft

����′ ��̂�
�C

��
�ft��̂���yt − ft��̂��

The first two terms of this estimator behave after reparameterization as Ĵ , but the last term

is based on second derivatives of ft��� and so leads to non-invariance problems [see (3.4)

and (4.20)]. The two last terms of J vanish asymptotically, they can be dropped as in the

estimation method proposed by Gouriéroux et al. (1984c). For the invariance purpose, to

discard the last term is the correct way to proceed.

5.2.2. QGPML Methods

Gouriéroux et al. (1984c) pointed out that some lower efficiency bound can be achieved by

a two-step estimation procedure, when the functional form of the true conditional second

order moment of yt given xt is known:

V�yt�xt� = �0�xt� = h�xt� �0� = ht��0��

The method is based on various classical exponential families (negative-binomial, gamma,

normal) which depend on an additional parameter � linked with the second order moment
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of the pseudo-distribution. If � and 
 are the expectation and the variance-covariance

matrix of this pseudo-distribution: � = ���� 
�, where � defines for any �, a one to one

relationship between � and 
�

The class of linear exponential distributions depending upon the extra parameter � is of the

following form:

l∗�y� �� �� = exp�A��� �� + B��� y� + C��� ��y��

If we consider the negative binomial pseudo distribution A��� �� = −� ln
(

1 + �
�

)
and

C��� �� = ln
(
�/�� + ��

)
	 if otherwise we use the Gamma pseudo distribution: A��� �� =

−� ln��� and C��� �� = − �
�
. In the former case: � = ���� �2� = ��2/�1 − �2� and in the

latter � = ���� �2� = �2�2�

With preliminary consistent estimators �̃, �̃ of �, � where �̃ and �̃ are equivariant with

respect to ḡ, computed for example as in Trognon (1984), the QGPML estimator of � is

obtained by solving a problem of the type

max
�

n∑
t=1

l∗�yt� ft���� ��ft��̃�� gt��̃����

The QGPML estimator �̂ of � is strongly consistent and asymptotically normal:
√

n��̂ −
�0� →

L
N
[
0� 
Q

]
with


Q =
{

Ex

[
�f ′

t

��
gt��0�

−1 �ft

��′

]}−1

� I0 = J0 = Ex

[
�f ′

t

��
��0�gt��0�

−1 �ft

��′ ��0�

]
�
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I0 and J0 can be consistently estimated by:

Î = 1
n

n∑
t=1

St��̂� �̃� �̃�St��̂� �̃� �̃�′� Ĵ = 1
n

n∑
t=1

�f ′
t

��
��̂�

[
�C

��
�ft��̂�� ��ft��̃�� gt��̃���

]
�ft

��′ ��̂��

where

St��̂� �̃� �̃� = �f ′
t

��

[
�C

��
�ft��̂�� ��ft��̃�� gt��̃���

]
�yt − ft��̂���

Since �C
��

�ft��̂�� ��ft��̃�� gt��̃���, and yt − ft��̂� are invariant to reparameterizations if �̃ and

�̃ are equivariant, we face the same favorable case as before:

Î∗ = K
ḡ��̂��′ ÎK
ḡ��̂��� Ĵ∗ = K
ḡ��̂��′ ĴK
ḡ��̂���

and the Wald, Lagrange, score pseudo-asymptotic tests are invariant to a

reparameterization. These quasi-generalized pseudo-asymptotic tests are locally more

powerful than the corresponding pure pseudo-asymptotic tests under local alternatives [see

Trognon (1984)].

Furthermore the quasi-generalized LR statistic (QGLR) is invariant provided, the first-step

estimators �̃ and �̃ are equivariant under reparameterization. And as shown in Trognon

(1984), the QGLR statistic is asymptotically equivalent to the other pseudo-asymptotic

statistic under the null and under local alternatives.
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6. NUMERICAL RESULTS

In order to illustrate numerically the (non-)invariance problems discussed above, we

consider the model derived from the following equations:

yt = � + �1x
���
1t + �2x

���
2t + ut� ut ∼

i�i�d�
N
0� �2�� t = 1� � � � � n� (6.1)

where x
���
it = �x�

it − 1�/�� i = 1� 2, xit > 0 with x
���
it = log�xit� for � = 0� and the explanatory

variables x1t and x2t are fixed. The null hypothesis to be tested is:

H0 � � = 1� (6.2)

The log-likelihood associated with this model is:

l =
n∑

t=1

l
yt	 �� �1� �2� �� �2�� (6.3)

l
yt	 �� �1� �2� �� �2� = −1
2

ln�2�� − 1
2

ln��2� − 1
2�2

u2
t � t = 1� � � � � n� (6.4)

It is easy to see that changing the measurement units on x1t and x2t leaves the form of model

(6.1) and the null hypothesis invariant. For example, if both x1t and x2t are multiplied by a

positive constant k� i.e.

x1t∗ = kx1t� x2t∗ = kx2t� (6.5)

(6.1) can be reexpressed in terms of the scaled variables x1t∗ and x2t∗ as

yt = �∗ + �1∗x
���
1t∗ + �2∗x

���
2t∗ + ut� (6.6)
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where the power parameter � remains the same and

�∗ = � − k���k−�
2∑

i=1

�i� �i∗ = �ik
−�� i = 1� 2� (6.7)

On interpreting model (6.1) as a pseudo-model and (6.3) as a pseudo-likelihood, we will

examine the effect of rescaling on GMM-based and pseudo-likelihood tests. Moment

equations can be derived from the above model by differentiating the log-likelihood with

respect to model parameters and equating the expectation to zero. This yields following five

moment conditions:

E 
ut� = 0� E
[
utx

���
1t

]
= 0� E

[
utx

���
2t

]
= 0� (6.8)

E

[
ut

�

(
2∑

i=1

�i

[
x�

it ln xit − x
���
it

])] = 0� E
[
u2

t − �2
] = 0� t = 1� � � � � n� (6.9)

These equations provide an exactly identified system of equations. To get a system with 6

moment equations (hence overidentified), we add the equation:

E 
utx1tx2t� = 0� (6.10)

To get data, we considered the sample size n = 200 and generated yt according to equation

(6.1) with the parameter values � = 10� �1 = 1�0� �2 = 1�0� � = −1�0� �2 = 0�85� The values

of the regressors x1t and x2t were selected by transforming the values used in Dagenais and

Dufour (1991).7

7The numerical values of x1t� x1t and yt used are available from the authors upon request.

It is important to note that this is not a simulation exercise aimed at studying the statistical
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Numerical values of the GMM-based test statistics for a number of rescalings are reported

in Table 1 for the 5 moment system (6.8)–(6.9) and in Table 2 for the 6 moment system

(6.8)–(6.10). Results for the pseudo-likelihood tests appear in Table 1. Graphs of the non-

invariant test statistics are also presented in figures 1–3. In these calculations, the first-step

estimator of the two-step GMM tests is obtained by minimizing Mn ��� Wn� in (2.5) with

Wn = Im (equal weights), while the second step uses the weight matrix defined in (3.4). No

correction for serial correlation is applied (although this could also be studied).

These results confirm the theoretical expectations of the theory presented in the previous

sections. Namely, the GMM-based test statistics [D̄���� Wald, score, C���] are not invariant

to measurement unit changes and, indeed, can change substantially (even if both the

null and the alternative hypotheses remain the same under the rescaling considered here).

Noninvariance is especially strong for the overidentified system (6 equations). In contrast,

the D̄��� and score tests based on the continuously updated GMM criterion are invariant.

The same holds for the LR and adjusted score criteria based on linear exponential pseudo

likelihoods.

7. EMPIRICAL ILLUSTRATION: LINEAR STOCHASTIC DISCOUNT FACTOR

MODELS

In the context of linear stochastic discount factor model, it is shown that procedures

based on non-invariant test statistics could lead to drastically different results depending

properties of the tests, but only an illustration of the numerical properties of the test

statistics considered.
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on the form of identifying restrictions imposed. While an in-depth analysis of this

problem is provided by Burnside (2010) from the perspective of model misspecification and

identification, we aim to shed light on this issue from invariance considerations. The linear

stochastic discount factor model is described by the following two equations:

E 
mtR
e
t � = 0� (7.1)

mt = a − f ′
t b� (7.2)

where mt is the stochastic discount factor (SDF); ft is a k × 1 vector of factors; Re
t is the

excess return (the difference between the gross asset return and the risk free rate); a and

b are scalar and p × 1 vector of unknown parameters, respectively; E 
·� is an expectation

operator conditional on information up to time t − 1. The equations (7.1) and (7.2) can

equivalently be written as

E 
�a − f ′
t b�Re

t � = 0� (7.3)

Since the unknowns a and b are not identified individually, we consider the following two

normalizations [see Burnside (2010), Cochrane (2005)]:

Normalization 1 � E
[mt

a
Re

t

]
= 0

Normalization 2 � E
[

mt

E
mt�
Re

t

]
= 0�

By applying the normalizations to (7.3), we have

E 
�1 − f ′
t ��Re

t � = 0� E
[
�1 − �ft − �f�′�∗�R

e
t

] = 0� (7.4)
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where �f = E
ft�, � = b/a and �∗ = b/E
mt�. The implied two sets of sample moments are:

Dn��	 Zn� =
(

1
n

∑n
t=1�R

e
t − Re

t f
′
t ��

1
n

∑n
t=1 ft − �f

)
� Dn∗��∗� Zn∗� =

(
1
n

∑n
t=1�R

e
t − Re

t �ft − �f�′�∗�
1
n

∑n
t=1 ft − �f

)
�

It is clear that the sample moments satisfy

Dn∗ �ḡ ��� � Zn∗� = K 
ḡ ����′ Dn ��	 Zn�

with K 
ḡ ���� = diag�a/E
mt�� 1�; one set of moments can be derived from the other by

affine transformation of ft. Let Î∗��∗� be the HAC estimator of I��∗� with Bartlett kernel

and Î��� be defined similarly. Then we have

Î∗ �ḡ ���� = K 
ḡ ����′ Î ��� K 
ḡ ���� �

Therefore, by virtue of equation (5.3), CUP-GMM objective function and the statistic

D̄ are invariant to affine transformation of ft i.e., they are not affected by the form

of normalization employed. The model is estimated using the observed returns on 5

stocks:“WMK”, “UIS”, “ORB”, “MAT” and “ABAX” and the three factors Rm-Rf, SMB

and HML from the Fama-French data set over the period from January 5th, 1993 -

March 16th, 1993. All calculations were carried out in R Version 3.0.2 (R Development

Core Team (2013)) using the package gmm developed by Pierre Chaussé [Chaussé (2010)].

The data we use are readily available in the Finance data set contained in gmm. The

estimation methods are two-step GMM and CUP-GMM with covariance matrix estimated

with Bartlett and Quadratic Spectral (QS) kernels. Table 3 reports the values of J statistic

for testing the validity of the restrictions (7.4). For the two-step GMM, it is clear that
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the values of test statistics differ greatly across the normalizations, and are sensitive to

the choice of kernels. Furthermore, the test rejects the null of correct specification under

Normalization 2 with QS kernel, but the conclusion is reversed under Normalization 1.

In the case of CUP-GMM with Bartlett kernel, though there is a small incongruity in the

values of test statistics (possibly due to an optimization error), the model is not rejected

under both normalizations. The difference between test statistics under the CUP-GMM

with QS kernel may be attributed to the non-invariance of the objective function with

QS kernel. The main message of this exercise is that procedures based on non-invariant

test statistics can be quite sensitive to the identifying restrictions employed and may result

in conflicting conclusions. For a thorough discussion on the effect of normalizations on

estimation and inferences, we refer the reader to Hamilton et al. (2007).

8. CONCLUSION

In this paper, we have studied the invariance properties of hypothesis tests applicable in the

context of incompletely specified models, such as models formulated in terms of estimating

functions and moment conditions, which are usually estimated by GMM procedures,

or models estimated by pseudo-likelihood and M-estimation methods. The test statistics

examined include Wald-type, LR-type, LM-type, score-type, and C���-type criteria. We

found that all these procedures are not generally invariant to (possibly nonlinear) hypothesis

reformulations and reparameterizations, such as those induced by measurement unit

changes. This means that testing two equivalent hypotheses in the context of equivalent
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models may lead to completely different inferences. For example, this may occur after an

apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we studied restrictions that can be imposed

on the objective functions used for pseudo-likelihood (or M-estimation) as well as the

structure of the test criteria used with estimating functions and GMM procedures to obtain

invariant tests. In particular, we showed that using linear exponential pseudo-likelihood

functions allows one to obtain invariant score-type and C���−type test criteria, while in

the context of estimating function (or GMM) procedures it is possible to modify a LR-

type statistic proposed by Newey and West (1987) to obtain a test statistic that is invariant

to general reparameterizations. The invariance associated with linear exponential pseudo-

likelihood functions is interpreted as a strong argument for using such pseudo-likelihood

functions in empirical work. Furthermore, the LR-type statistic is the one associated with

using continuously updated GMM estimators based on appropriately restricted weight

matrices. Of course, this provides an extra argument for such GMM estimators.

ACKNOWLEDGEMENTS

The authors thank Marine Carrasco, Jean-Pierre Cotton, Russell Davidson, Abdeljelil

Farhat, V. P. Godambe, Christian Gouriéroux, Stéphane Grégoir, Hervé Mignon, Denis

Pelletier, Mohamed Taamouti, Pascale Valéry, three anonymous referees, and the Editor

Esfandiar Maasoumi for several useful comments. This work was supported by the

William Dow Chair in Political Economy (McGill University), the Bank of Canada

(Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of

41

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair

of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-

von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence

[program on Mathematics of Information Technology and Complex Systems (MITACS)], the

Natural Sciences and Engineering Research Council of Canada, the Social Sciences and

Humanities Research Council of Canada, and the Fonds de recherche sur la société et la

culture (Québec).

REFERENCES

Amari, S.-I. (1990). Diffrential-Geometrical Methods in Statistics, Vol. 28 of Lecture Notes in

Statistics. Berlin: Springer-Verlag.

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance

matrix estimation. Econometrica 59:817–858.

Andrews, D. W. K., Monahan, J. C. (1992). An improved heteroskedasticity and

autocorrelation consistent covariance matrix estimator. Econometrica 60:953–966.

Basawa, I. V. (1985). Neyman-Le Cam tests based on estimating functions. In: Le Cam,

L., Olshen, R. A. eds, Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer.

California: Wadsworth, Belmont, pp. 811–825.

Basawa, I. V., Godambe, V. P., Taylor, R. L., eds. (1997). Selected Proceedings of the

Symposium on Estimating Functions, Vol. 32 of IMS Lecture Notes Monograph Series,

Institute of Mathematical Statistics, Hayward, California.

42

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Bates, D. M., Watts, D. G. (1980). ‘Relative curvature measures of nonlinearity. Journal of

the Royal Statistical Society, Series B 42:1–25.

Bates, D. M., Watts, D. G. (1981). Parameter transformations for improved approximate

confidence regions in nonlinear least squares. The Annals of Statistics 9:1152–1167.

Bera, A., Bilias, Y. (2001). ‘Rao’s score, Neyman’s C��� and Silvey’s LM tests: an essay

on historical developments and some new results. Journal of Statistical Planning and

Inference 97:9–44.

Berger, A., Wallenstein, S. (1989). On the theory of C�-tests. Statistics and Probability Letters

7:419–424.

Bernshtein, A. V. (1981). Asymptotically similar criteria. Journal of Soviet Mathematics

17(3), 1825–1857.

Bourlange, D., Doz, C. (1988). Pseudo-maximum de vraisemblance: expériences de

simulations dans le cadre de modèle de Poisson. Annales d’Économie et de Statistique

10:139–178.

Breusch, T. S., Schmidt, P. (1988). Alternative forms of the Wald test: How long is a piece

of string? Communications in Statistics, Theory and Methods 17:2789–2795.

Burguete, W. J., Gallant, A. R., Souza, G. (1982). On unification of the asymptotic theory

of nonlinear econometric models. Econometric Reviews 1:151–211 (with comments).

Burnside, C. (2010). Identification and inference in linear stochastic discount factor models,

Technical report. NBER WP 16634.

Burnside, C., Eichenbaum, M. S. (1996). Small-sample properties of GMM-based Wald

tests. Journal of Business and Economic Statistics 14:294–308.

43

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Chaussé, P. (2010). Computing generalized method of moments and generalized empirical

likelihood with r. Journal of Statistical Software 34(11):1–35.

Cochrane, J. H. (2005). Asset Pricing. Princeton, New Jersey: Princeton University Press.

Cox, D. R., Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman & Hall.

Crépon, B., Duguet, E. (1997). Research and development, competition and innovation:

Pseudo maximum likelihood and simulated maximum likelihood applied to count data

models with heterogeneity. Journal of Econometrics 79:355–378.

Critchley, F., Marriott, P., Salmon, M. (1996). On the differential geometry of the Wald

test with nonlinear restrictions. Econometrica 64:1213–1222.

Cushing, M. J., McGarvey, M. G. (1999). Covariance matrix estimation, in (Mátyás 1999),

chapter 3, pp. 63–95.

Dagenais, M. G., Dufour, J.-M. (1991). Invariance, nonlinear models and asymptotic tests.

Econometrica 59:1601–1615.

Dagenais, M. G., Dufour, J.-M. (1992). On the lack of invariance of some asymptotic tests

to rescaling. Economics Letters 38:251–257.

Davidson, R., MacKinnon, J. G. (1991). Artificial regressions and C��� tests. Economics

Letters 35:149–153.

Davidson, R., MacKinnon, J. G. (1993). Estimation and Inference in Econometrics, Oxford

University Press, New York.

Dufour, J.-M. (1997). Some impossibility theorems in econometrics, with applications to

structural and dynamic models. Econometrica 65:1365–1389.

44

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Dufour, J.-M., Dagenais, M. G. (1992). Nonlinear models, rescaling and test invariance.

Journal of Statistical Planning and Inference 32:111–135.

Dufour, J.-M., Jasiak, J. (2001). Finite sample limited information inference methods for

structural equations and models with generated regressors. International Economic

Review 42:815–843.

Dufour, J.-M., Trognon, A., Tuvaandorj, P. (2013). Invariant tests based on M-estimators,

estimating functions, and the generalized method of moments, Technical report,

Department of Economics, McGill University. http://www.jeanmariedufour.com.

Dufour, J.-M., Trognon, A., Tuvaandorj, P. (2015). Generalized c��� tests for estimating

functions with serial dependence, Technical report, McGill University and CREST-

ENSAE Paris.

Dufour, J.-M., Valéry, P. (2009). Exact and asymptotic tests for possibly non-regular

hypotheses on stochastic volatility models. Journal of Econometrics 150:193–206.

Durbin, J. (1960). Estimation of parameters in time series regression models. Journal of the

Royal Statistical Society, Series A 22:139–153.

Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. New York:

Academic Press.

Gallant, A. R. (1987). Nonlinear Statistical Models. New York: John Wiley & Sons.

Gallant, A. R., White, H. (1988). Estimation and Inference for Nonlinear Dynamic Models.

New York : Blackwell.

Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation.

The Annals of Mathematical Statistics 31:1208–1212. Ackowledgement 32(1960):1343.

45

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Godambe, V. P., ed. (1991). Estimating Functions, Oxford, U.K: Clarendon Press.

Gong, G., Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and

applications. The Annals of Statistics 13:861–869.

Gouriéroux, C. and Monfort, A. (1989). A general framework for testing a null hypothesis

in a ‘mixed’ form’. Econometric Theory 5:63–82.

Gouriéroux, C., Monfort, A. ( 1993). Pseudo-likelihood methods. In: Maddala, G. S.,

Rao, C. R., Vinod, H. D. eds, ‘Handbook of Statistics 11: Econometrics’, chapter 12,

Amsterdam: North-Holland, pp. 335–362.

Gouriéroux, C., Monfort, A. (1995). Statistics and Econometric Models, Volumes One and

Two. Cambridge, U.K.: Cambridge University Press, Translated by Quang Vuong.

Gouriéroux, C., Monfort, A., Trognon, A. (1984a). Estimation and test in probit models

with serial correlation. In: Florens, J. P., Mouchart, M., Roualt, J. P., Simar, L. eds.,

Alternative Approaches to Time Series Analysis. Facultes Universitaires Saint-Louis,

Bruxelles, Belgium, pp. 169–209.

Gouriéroux, C., Monfort, A., Trognon, A. (1984b). Pseudo maximum likelihood methods:

Applications to Poisson models. Econometrica 52:701–720.

Gouriéroux, C., Monfort, A., Trognon, A. (1984c). Pseudo maximum likelihood methods:

Theory. Econometrica 52:681–700.

Gregory, A., Veall, M. (1985). Formulating Wald tests of nonlinear restrictions.

Econometrica 53:1465–1468.

Hall, A. R. (1999). Hypothesis testing in models estimated by GMM, in (Mátyás 1999),

chapter 4, pp. 96–127.

46

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Hall, A. R. (2004). Generalized Method of Moments. Advanced Texts in Econometrics. Oxford,

U.K.: Oxford University Press.

Hamilton, J. D., Waggoner, D. F., Zha, T. (2007). ‘Normalization in econometrics.

Econometric Reviews 26:221–252.

Hansen, B. E. (1992). Consistent covariance matrix estimation for dependent heterogeneous

processes. Econometrica 60:967–972.

Hansen, L. (1982). Large sample properties of generalized method of moments estimators.

Econometrica 50:1029–1054.

Hansen, L. P., Heaton, J., Yaron, A. (1996). Finite-sample properties of some alternative

GMM estimators. Journal of Business and Economic Statistics 14:262–280.

Hotelling, H. (1936). Relations between two sets of variables. Biometrika 28:321–377.

Hougaard, P. (1982). Parameterisations of nonlinear models. Journal of the Royal Statistical

Society, Series B 44:244–252.

Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons.

Jorgensen, B. (1997). The Theory of Dispersion Models. London, U.K.: Chapman & Hall.

Kass, R. E., Voss, P. W. (1997). Geometrical Foundations of Asymptotic Inference. New York:

John Wiley & Sons.

Kocherlakota, S. and Kocherlakota, K. (1991). Neyman’s C��� test and Rao’s efficient

score test for composite hypotheses. Statistics and Probability Letters 11:491–493.

Lafontaine, F., White, K. J. (1986). Obtaining any Wald statistic you want. Economics

Letters 21:35–40.

47

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Larsen, P. V., Jupp, P. E. (2003). Parametrization-invariant Wald tests. Bernoulli 9(1):167–

182.

Le Cam, L. (1990). On the standard asymptotic confidence ellipsoids of Wald. International

Statistical Review 58:129–152.

Lehmann, E. L. (1983). Theory of Point Estimation. New York: John Wiley & Sons.

Lehmann, E. L. (1986). Testing Statistical Hypotheses. 2nd edn, New York: John Wiley &

Sons.

Marriott, P., Salmon, M., eds (2000). Applications of Differential Geometry to Econometrics.

Cambridge, U.K.: Cambridge University Press.

Mátyás, L., ed. (1999). Generalized Method of Moments Estimation. Cambridge, U.K.:

Cambridge University Press.

Newey, W. K. (1985). GMM specification testing. Jornal of Econometrics 29:229–256.

Newey, W. K., McFadden, D. (1994). Large sample estimation and hypothesis testing. In:

Engle, R. F. McFadden, D. L. eds., Handbook of Econometrics, Volume 4. chapter 36,

Amsterdam: North-Holland, pp. 2111–2245.

Newey, W. K., West, K. D. (1987). Hypothesis testing with efficient method of moments

estimators. International Economic Review 28:777–787.

Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. In:

Grenander, U., ed., ‘Probability and Statistics, the Harald Cramér Volume’, Almqvist

and Wiksell, Uppsala, Sweden, pp. 213–234.

Phillips, P. C. B., Park, J. Y. (1988). On the formulation of Wald tests of nonlinear

restrictions. Econometrica 56:1065–1083.

48

D
ow

nl
oa

de
d 

by
 [

E
ns

ai
],

 [
Je

an
-M

ar
ie

 D
uf

ou
r]

 a
t 0

1:
58

 2
2 

Ju
ne

 2
01

6 



A
c
c
e
p
te
d

M
a
n
u
s
c
ri
p
t

Pitman, E. J. G. (1939). Tests of hypotheses concerning location and scale parameters.

Biometrika 31:200–215.

Podivinsky, J. M. (1999). Finite sample properties of GMM estimators and tests. In:

(Mátyás 1999), chapter 5, pp. 128–148.

R Development Core Team (2013). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

http://www.R-project.org

Ronchetti, E. (1987). Robust C���-type tests for linear models. Sankhyā Series A 49:1–16.
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Table 1: Test Statistics for H0 � � = 1 for Different Measurement Units; 5 Moment

Model

Two-step GMM CUP-GMM Pseudo ML

k D̄ Wald Score C��� D̄ Wald Score C��� LR Mod. score
0�2 0�001 44�750 84�810 33�972 5�771 44�750 5�771 5�066 66�408 31�060
0�4 0�000 44�746 47�692 16�726 5�771 44�746 5�771 0�922 66�408 31�060
0�6 0�001 44�745 42�983 14�106 5�771 44�745 5�771 4�482 66�408 31�060
0�8 0�010 44�744 39�161 12�369 5�771 44�744 5�771 5�282 66�408 31�060
1�0 0�056 44�743 35�676 10�593 5�771 44�743 5�771 5�3838 66�408 31�060
3�0 34�629 44�743 118�876 42�124 5�771 44�743 5�771 0�6720 66�408 31�060
5�0 1�641 44�743 62�195 34�746 5�771 44�743 5�771 2�5545 66�408 31�060
7�0 0�282 44�742 61�766 34�953 5�771 44�742 5�771 3�9336 66�408 31�060

10�0 0�068 44�739 61�147 34�465 5�771 44�739 5�771 4�5010 66�408 31�060
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Table 2: Test Statistics for H0 � � = 1 for Different Measurement Units; 6 Moment

Models

Two-step GMM CUP-GMM

k D̄ Wald Score C��� D̄ Wald Score C���

0�2 0�016 416�546 106�734 54�462 19�480 359�380 11�107 3�189
0�4 0�036 221�829 108�142 54�852 19�480 83�743 16�296 7�318
0�6 0�248 213�918 107�764 52�818 19�480 40�481 18�637 7�063
0�8 1�068 178�757 106�053 47�539 19�480 34�101 17�678 0�661
1�0 3�562 139�364 103�364 37�915 19�480 35�580 17�769 5�215
3�0 47�490 46�214 110�751 7�960 19�480 45�146 15�250 4�650
5�0 1�651 129�698 48�704 6�518 19�480 59�667 13�367 4�611
7�0 1�511 384�944 49�719 9�978 19�480 118�911 13�937 5�639

10�0 2�031 905�870 50�264 10�747 19�480 406�974 14�162 6�136
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Table 3: J Statistic for the Validity of (7.4) Under Different Identifying Restrictions

(p-values in Parentheses)

Two-step GMM CUP-GMM

Normalization 1 Normalization 2 Normalization 1 Normalization 2

QS Bartlett QS Bartlett QS Bartlett QS Bartlett

0.218 0.106 17.214 5.670 1.235 1.774 1.759 1.866
(0.897) (0.949) (0.000) (0.059) (0.539) (0.412) (0.415) (0.393)
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Figure 1: Two-step GMM tests based on 5 moment conditions.
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Figure 2: Two-step GMM tests based on 6 moment conditions.
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Figure 3: CUP GMM tests based on 6 moment conditions.
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