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ABSTRACT

Asymptotic and bootstrap inference methods for inequality indices are for the most part unre-

liable due to the complex empirical features of the underlying distributions. In this paper, we

introduce a Fieller-type method for the Theil Index and assess its finite-sample properties by a

Monte Carlo simulation study. The fact that almost all inequality indices can be written as a

ratio of functions of moments and that a Fieller-type method does not suffer from weak identi-

fication as the denominator approaches zero, makes it an appealing alternative to the available

inference methods. Our simulation results exhibit several cases where a Fieller-type method im-

proves coverage. This occurs in particular when the Data Generating Process (DGP) follows a

finite mixture of distributions, which reflects irregularities arising from low observations (close

to zero) as opposed to large (right-tail) observations. Designs that forgo the interconnected ef-

fects of both boundaries provide possibly misleading finite-sample evidence. This suggests a

useful prescription for simulation studies in this literature.

KEYWORDS: Inequality measures, Fieller-type confidence set, Delta method, Singh-Maddala

distribution, Gamma distribution, mixture.
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1 Introduction

Asymptotic inference methods for inequality indices are for the most part unreliable due

to the complex empirical features of the underlying distributions, particularly in the case of

income. Typically, the presence of heavy tails invalidates standard parametric and nonparametric

inference methods based on central limit theory (CLT), leading to spurious conclusions with

samples of realistic size. This problem persists even with very large samples. Moreover, for

some parameter values, the moments of widely used distributions in this literature, such as the

Singh-Maddala and Pareto distributions, do not exist. Early references can be traced back to

Maasoumi (1997) or Mills and Zandvakili (1997); for a survey, see Cowell and Flachaire (2015).

Bootstrap inference methods emerge as an appealing alternative, since observations can

often be viewed as independent random draws from the population. The first study to use and

recommend bootstrap methods for inequality indices is the one of Mills and Zandvakili (1997).

Biewen (2002) studied the performance of standard bootstrap methods in the context of in-

equality measures assuming a lognormal distribution as the Data Generating Process (DGP).

Although his results suggest that the bootstrap performs well in finite samples, the lognormal

distribution he used does not capture the thick tails typically observed in empirical work (David-

son and Flachaire, 2007). Other simulation studies based on heavy-tailed distributions, such

as the Singh-Maddala distribution, confirm that bootstrapping fails – often by far – to control

coverage rates, despite the fact that they lead to higher-order refinements relative to asymptotic

methods (Davidson and Flachaire, 2007; Cowell and Flachaire, 2007).

Non-standard inference methods have recently been suggested in an attempt to improve

the quality of inference for inequality measures. Two notable approaches are permutation tests

(Dufour, Flachaire and Khalaf; 2010) and semi-parametric methods (Davidson and Flachaire,

2007; Cowell and Flachaire, 2007). The permutational approach focuses on testing the equality

of two indices, and the authors show that it performs very well when the two indices come from

similar distributions. The semi-parametric bootstrap approach assumes a parametric distribution

for the right tail and a nonparametric empirical distribution function (EDF) for the rest. This

method leads to considerable refinement over their asymptotic and bootstrap counterparts, pro-

vided the probability of the tail (p) and the ordered statistics defining the upper tail (k) are well

chosen, which is usually not an easy task. Thus except for very specific cases, accurate inference

methods on inequality measures are not available.

In this paper, we introduce the Fieller method for the Theil Index, and we assess its finite-

sample properties through a Monte Carlo simulation study. Fieller’s method was originally

introduced for inference on the ratio of two means of normal variates. It is based on inverting
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a t-test of a linear restriction associated with the ratio, and allows one to get exact confidence

sets for this ratio. This holds promise relative to the standard Delta method especially when the

the denominator of the ratio approaches zero, since the implicit linear reformulation addresses

the underlying weak identification. Most inequality indices can be written as a ratio of functions

of moments; so a Fieller-type method may plausibly lead to more reliable inference on these

indices. However, given the non-linear dependence between the numerator and the denominator

of the indices along with the typically positive support of the underlying distributions, the ad-

vantages from employing a Fieller-type method should not be taken for granted. This motivates

the present work.

The method first introduced by Fieller (1940, 1954) was extended to independent samples

of different sizes (Bennett, 1953), multivariate models (Bennett, 1959), general exponential re-

gression models (Cox, 1967), general linear regression models (Zerbe, 1978; Dufour, 1997), and

dynamic models with possibly persistent covariates (Bernard, Idoudi, Khalaf and Yélou, 2007;

Bernard, Chu, Khalaf and Voia, 2015; Stock and Lazarus, 2016). Bolduc, Khalaf and Yélou

(2010) used several variants of Fieller’s approach to build simultaneous confidence sets for mul-

tiple (possibly weakly identified) ratios and they showed in a simulation study that a Fieller-

type method outperforms the Delta method and controls level globally. Empirically, Fieller’s

approach has been routinely applied in medical research and to a lesser extent in economics

(Srivastava, 1986; Willan and O’Brien, 1996; Johannesson, Jonsson and Karlsson, 1996; Laska,

Meisner, and Siegel, 1997; Stock and Lasaruz, 2016).

Fieller-type confidence sets may be perceived as counter-intuitive, because they can pro-

duce unbounded regions including the whole real line.1 This perhaps gives reason for their un-

popularity in applied work relative to Delta method-based confidence sets (DCS), despite their

solid theoretical foundation. However, the geometric interpretation of Fieller’s method is quite

intuitive (see von Luxburg and Franz, 2004). More to the point here, in the presence of iden-

tification problems, valid coverage requires possibly unbounded outcomes (Gleser and Hwang,

1987; Dufour, 1997), which is allowed by a Fieller-type solution as opposed to the Delta method.

Our simulation results provide evidence on the superiority of a Fieller-type method in terms

of reducing size distortions in many useful cases. In particular, a Fieller-type method improves

coverage over the Delta method when the distribution under the null allows for bunching of low

observations (close to zero) in addition to a thick right tail. For such cases, the denominator

of the Theil index is small relative to the numerator and inequality is high. Methodologically,

our findings suggest that studies focusing only on the upper tail may misrepresent finite-sample

1See Scheffé (1970) for a modified version of Fieller’s method that avoid the confidence set R.
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distortions with positive support distributions. In contrast, our design does allow us to assess

further irregularities arising from low observations. As illustrated by Cowell and Victoria-Feser

(1996), both boundaries may matter for general entropy class of indices, although not necessarily

for the Theil index.

The paper is organized as follows. Section 2 presents the Fieller-type method for the Theil

index. In section 3, Monte Carlo results are provided. Section 4 concludes.

2 Fieller-type inference for inequality measures

Most income inequality indices depend solely on the underlying distribution of income.

Technically speaking, they can be typically written as a functional which maps the space of

cumulative distribution functions (CDFs) of income to the positive real line.

2.1 General functional ratios

Denote by Y the random variable representing income, and by FY (y) its CDF. The class of

indices considered in this paper can be written as the ratio of functions of two moments, namely

the mean µ and another moment ν = E[φ(Y )], where φ(·) is a given function. In particular, for

the Theil index φ(Y ) = Y log(Y ). In general, most inequality indices can be written as

I = ψ(µ; ν) =
ψ1(µ; ν)

ψ2(µ; ν)
. (1)

The index I can be estimated using sample moments:

µ̂ =
1

n

n∑
i=1

Yi , ν̂ =
1

n

n∑
i=1

φ(Yi) , (2)

where Y1, . . . , Yn is a sample of observations on Y , and φ(Yi) is a function that takes different

forms for different inequality indices. If we assume that the estimator is asymptotically normal,

then the asymptotic covariance matrix can be estimated by

V (Î) =
1

n

[
∂ψ
∂µ

∂ψ
∂ν

] [ σ̂2
µ σ̂µν

σ̂µν σ̂2
µ

] [
∂ψ
∂µ
∂ψ
∂ν

]
(3)

where V̂ (Î) ≡ V (Î)|µ=µ̂ . Here, σ̂2
µ, σ̂2

µ and σ̂µν are, respectively, estimates of the variance of Y ,

the variance of φ(Y ), and the covariance of Y and φ(Y ).2

2Note that the variance of µ̂, the variance of ν̂ and covariance of the (µ̂, ν̂) are equal to σ̂2µ/n, σ̂2ν/n and σ̂µν/n.
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In this paper, we consider the problem of building Fieller-type confidence sets (FCS) and

Delta method confidence sets (DCS) for an index of the form I in (1). In general, this can

be viewed as equivalent to finding the values of I0 which are not rejected when one tests null

hypotheses of the form

H0(I0) :
ψ1(µ, ν)

ψ2(µ, ν)
= I0 (4)

where I0 is any admissible value of I. Here, this can be achieved by inverting the absolute value

or the square of the relevant t-type statistic. To invert a t-test with respect to the parameter tested,

we collect all the values of this parameter for which the test is not significant at a given level.

Following the Delta method, we invert the test statistic

t2(I0) =
(Î − I0)2

V̂ (Î)
(5)

which leads to the confidence set

DCS(I; 1− α) =
[
Î − zα/2[V̂ (Î)]1/2 ; Î + zα/2[V̂ (Î)1/2]

]
(6)

where zα/2 is the usual α critical point based on the normal distribution (i.e., P[Z ≥ zα/2] = α/2

for Z ∼ N [0, 1]).

By contrast, the Fieller approach can be applied as follows. For each possible value I0, the

Fieller-type approach consists in considering the equivalent linear hypothesis

HL(I0) : θ(I0) = 0 , where θ(I0) = ψ1(µ, ν)− I0 ψ2(µ, ν) (7)

where the superscript L is added to differentiate the original null hypothesis from its linear

reformulation. Thorough this exact linearization, the Fieller-type method avoids possible (weak)

identification problems when the denominator ψ2(µ, ν) is close to zero. To construct the FCS,

we consider the square of the t-statistic associated with HL(I0) in (7):

t(I0)2 =
θ̂(I0)2

V̂ [θ̂(I0)]
(8)

where V̂ [θ̂(I0)] is an estimate of the variance of θ̂(I0). If the statistic follows asymptotically a

standard normal distribution, then a confidence set with level 1 − α for the index I can be built

by noting that

t(I0)2 ≤ z2
α/2 ⇔ θ̂(I0)2

V̂ [θ̂(I0)]
≤ z2

α/2 ⇔ θ̂2(I0)− z2
α/2 V̂ [θ̂(I0)] ≤ 0 . (9)
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This yields the confidence set

FCS(I; 1− α) =
{
I0 : θ̂2(I0)− z2

α/2 V̂ [θ̂(I0)] ≤ 0
}
. (10)

Since θ̂(I0) is linear in I0, θ(I0)2 and V̂ [θ̂(I0)] are quadratic functions of I0:

θ̂2(I0) = A1I
2
0 +B1I0 + C1 , V [θ̂(I0)] = A2I

2
0 +B2I0 + C2 , (11)

where the coefficients (defined below) depend on the data and the Gaussian critical point. On

substituting (11) into (10), we get the quadratic inequality

AI2
0 +BI0 + C ≤ 0 (12)

where

A = A1 − z2
α/2A2 , B = B1 − z2

α/2B2 , C = C1 − z2
α/2C2 . (13)

The coefficients, A1, B1, C1, A2, B2, C2 are functions of the sample moments and their variance

estimates. The FCS solve the second degree polynomial inequality in (12) for I0. Let ∆ =

B2 − 4AC, then the (1− α)-level Fieller-type confidence set is characterized as follows:

1. if ∆ > 0 and A > 0, then FC(I; 1− α) =
[
−B−

√
∆

2A
, −B+

√
∆

2A

]
,

2. if ∆ > 0 and A < 0, then FC(I; 1− α) =
]
−∞, −B+

√
∆

2A

]
∪
[
−B−

√
∆

2A
, +∞

[
,

3. if ∆ < 0, then A < 0 and FC(I; 1− α) =R.

For more details, see Bolduc, Khalaf and Yélou (2010) and the references therein.

2.2 Fieller-type inference for the Theil Index

The Theil index belongs to the family of GE indices and can be written as a function of two

moments µ = E(Y ) and ν = E[Y log(Y )], where µ and ν can be estimated using their sample

counterparts. In this paper, we will use the following expression for the Theil index:

IT =
ν

µ
− log(µ). (14)

For the Theil index (IT ), the null hypothesis defined in (4) can be written as:

H0(IT0) :
ν

µ
− log(µ) = IT0 . (15)

5



The variance of the estimated Theil index can be derived using the Delta method and it is defined

by (3) where the expressions of the derivatives in this context are:

∂ψ

∂µ
= −(ν + µ)

µ2
,

∂ψ

∂ν
=

1

µ
. (16)

The Fieller-type method for the Theil index starts by considering the equivalent linear hypothesis

as shown in (7):

H0(IT0) : ν − µ log(µ)− µ IT0 = 0 , (17)

along with the corresponding t-statistics (squared). The confidence set for IT is then obtained

by solving the quadratic inequality described by (10) - (12). For this, we derive the parameters

A1, B1, C1, A2, B2 and C2 in equation (11) for the Theil index:

A1 = µ̂2 , B1 = −2µ̂ [ν̂ − µ̂ log(µ̂)] , C1 = [ν̂ − µ̂ log(µ̂)]2 . (18)

To get the variance of θ̂(I0), we apply the Delta method to θ(I0) in (7):

A2 = σ̂2
µ/n , B2 =

(
2σ̂2

µ [log(µ̂) + 1]− 2σ̂µν
)
/n , (19)

C2 =
(
σ̂2
µ[log(µ̂) + 1]2 − 2σ̂µν [log(µ̂) + 1] + σ̂2

µ

)
/n , (20)

where σ̂2
µ, σ̂2

µ and σ̂µν are defined in (3).

3 Simulation results

In this section, we provide Monte Carlo evidence on the finite-sample properties of the

Fieller-type method for the Theil index. We conduct several simulation studies focusing on the

behaviour of the Fieller method when the hypothesized income distribution under the null is

characterized by thick tails. To this end, we simulate data sets from the Singh-Maddala distri-

bution [Yi ∼ SM(a, b, q)], the Gamma distribution [Gamma(k, θ)], and finite mixtures of the

latter. These distributions have been used in the literature in the context of income inequality

measures (Brachman, Stich and Trede, 1996; McDonald, 1984; Kleiber and Kotz, 2003; Cowell

and Victoria-Feser, 1996).

The CDF of the Singh-Maddala distribution can be written as

F (y) = 1−
[
1 +

(y
b

)a]−q
, (21)

where a is a shape parameter which affects both tails, q is another shape parameter which affects

only the right tail, and b is a scale parameter which has no impact on our analysis (for the indices

in question are scale invariant. For this distribution, the k-th moment exists for −a < k < aq.
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The expectation of the Singh-Maddala distribution can be expressed as

µ =
q bΓ (a−1 + 1) Γ (q − a−1)

Γ (q + 1)
. (22)

In this case, a closed-form expression for ν = E[Y log(Y )] is also available:

ν = µ a−1[ψ(a−1 + 1)− ψ(q − a−1) + a log(b)] (23)

where Γ(·) is the Gamma function and ψ(·)≡ Γ′(·)/Γ(·) is the digamma function.

The other distribution we consider in the simulations is the Gamma distribution with density

function

f(y) =
yk−1e−(k/θ)

θkΓ(k)
, y > 0 , (24)

where k is a shape parameter and θ is a scale parameter. The expectation of this distribution

(µ) is the scale multiplied by the shape parameter (µ = kθ). The value of ν for the Gamma

distribution was computed by numerical methods.

The number of replications was set to N = 10000. For each sample, we compute the Theil

inequality, and the underlying estimated variance, and the t-type statistics associated with the

Delta and Fieller-type methods. Because of the duality between tests and confidence sets, the

coverage rate of the confidence sets can be evaluated by computing the rejection probabilities of

these tests. The coverage error rate (or equivalently the rejection probability) is computed as the

proportion of times the relevant t-statistic rejects the null hypothesis. For a significance level α,

we say the test approaches the nominal level when the rejection rate approaches α.

The main results of the simulation experiments are presented in the form of plots where the

numbers of observations are on the x-axis and the coverage error rates on the y-axis. The 5%

nominal level is maintained for all tests. The horizontal solid lines in the graphs represent the

nominal level 0.05.

Our simulation results show that the Fieller-type method has better coverage than the Delta

method in several cases, especially when the underlying distribution involves heavy lower and

upper tails.

Figure 1 plots the rejection probabilities of the Fieller-type and Delta methods under Singh-

Maddala distributions. In the left panel, the distribution is Singh-Maddala with parameters a =

2.8 and q = 1.7. The Fieller-type and Delta methods have similar coverage. However, the other

designs considered reveal important improvement with the Fieller method. In the right panel, the

distribution is Singh-Maddala with parameters a = 1.1 and q = 5. For this choice of parameters,

the distribution exhibits bunching of low observations. In this context, the Fieller-type method

outperforms the Delta method for relatively small samples up to 400 observations.
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Figure 1: Singh-Maddala distributions

Rejection probabilities for Delta and Fieller methods

Left panel: SM(a = 2.8, q = 1.7) ; Right panel: SM(a = 1.1, q = 5)

Note - The Delta method and Fieller method statistics are defined by (5) and (8) respectively. The null hypothesis

tested is H(IT0) : I = I0 where I0 is computed analytically.

Figure 2: Gamma distributions

Rejection probabilities for Delta and Fieller methods

Left panel: Gamma(k = 1, θ = 1) ; Right panel: Gamma(k = 0.3, θ = 1)

Note - The Delta method and Fieller method statistics are defined by (5) and (8) respectively. The null hypothesis

tested is H(IT0) : I = I0 where I0 is computed analytically.
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The same conclusion can be drawn from the case where we assume a Gamma distribution

under the null. The size improvements we find with the Fieller-type method increase as the left

tail of the distribution gets thicker. In the left panel of Figure 2, we plot the rejection probabilities

under both methods under a Gamma(k = 1, θ = 1) distribution. The differences in the rejection

probabilities for samples of size 20 is around 4%, and around 2% with 100 observations. As we

increase the proportion of low observations, the Fieller-type method provides remarkable size

improvements, and in some cases it approaches the 5% nominal level for sample sizes as small

as 200. In the right panel of this figure, the Fieller-type method coverage error is less than that

of Delta method by around 9% going down from almost 15% to 6%.

The shape of the distributions underlying the aforementioned results represent populations

where most of the individuals are poor and few are rich. The choice of these distributions was

made to study the performance of the two methods when tails are fat both near the zero boundary

and to the right. As we will discuss shortly our findings conform with the theoretical work of

Cowell and Victoria-Feser (1996).

In Figures 3 and 4, we consider mixed designs with bimodal distributions under the null.

These distributions, their parameters and the associated mixture weights are chosen to capture

represent tail thickness at both ends of the distribution. Since the analytical expression for the

Theil under the null of mixtures does not exist, we used an estimate of the Theil index based on

a very large sample (n=1000000000). This approach of computing the true Theil index under

the null is justified by the consistency of the Theil Index.

Figure 3 plots the rejection probabilities for mixtures of two Singh-Maddala distributions.

In the left panel, the mixture combines a SM(1.1, 5) with probability 0.7 weight and SM(2.8, 1.7)

with probability 0.3: i.e. on average, we draw 70% of the sample from a distribution with a peak

near low incomes, and 30% from a distribution characterized by a thick right tail. For this de-

sign, the Fieller-type method approaches the nominal significance level for samples as small as

50 observations.

In the right panel, we increase the weight for the first distribution from 0.7 to 0.9. Thus we

are giving more weight to the distribution with irregularities on the left tail rather than the one

characterized with right tail thickness. The Fieller-type method dominates the Delta method by

wide margins. This confirms our previous conclusion that the Fieller-type method is superior to

the Delta method, especially when the distribution exhibits bunching of low observations.

Further evidence appears in Figure 4 where we consider mixtures of Gamma(0.3, 1) and

SM(2.8, 1.7) distributions. Again the left panel gives to the first distribution (the Gamma distri-

bution) a weight of 0.7, while the right one increases this weight to 0.9. Again, the Fieller-type

method improves coverage, especially for small samples.
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Figure 3: Mixtures of Singh-Maddala distributions

Rejection probabilities for Delta and Fieller methods

Left panel: 0.7∗SM(1.1, 5) + 0.3∗SM(2.8, 1.7)

Right panel: 0.9∗SM(1.1, 5) + 0.1∗SM(2.8, 1.7)

Note - The Delta method and Fieller method statistics are defined by (5) and (8) respectively. The null hypothesis

tested is H(IT0) : I = I0 where I0 is calibrated via a separate simulation.

The designs we considered can be interpreted through the work of Cowell and Victoria-

Feser (1996). This paper views the underlying distribution as a mixture of a finite number of

other distributions where bunching and tail behaviour can be formally modelled. Results for

cases of “extreme” behaviour are pointed out, including the zero and infinite boundaries. In

particular, the Theil index can have an unbounded influence function when some of the data

approaches∞, although the zero boundary may matter for other inequality indices.

The influence function measures the change in the estimator for a small perturbation of the

data. It is related to the bias of the estimator in the sense that when the IF is unbounded the bias

can be infinite. Cowell and Victoria-Feser (1996) show that any decomposable scale invariant

index for which the mean is estimated from the sample has an unbounded IF . We find that the

Fieller-type method improves coverage, especially when small (near zero) or large observations

are highly probable.
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Figure 4: Mixtures of Gamma and Singh-Maddala distributions

Rejection probabilities for Delta and Fieller methods

Left panel: 0.7 ∗Gamma(0.3, 1) + 0.3∗SM(2.8, 1.7)

Right panel: 0.9 ∗Gamma(0.3, 1) + 0.1∗SM(2.8, 1.7)

Note - The Delta method and Fieller method statistics are defined by (5) and (8) respectively. The null hypothesis

tested is H(IT0) : I = I0 where I0 is calibrated via a separate simulation.

4 Conclusion

This paper proposes Fieller-type procedures for inference on the Theil inequality index

and illustrates its superiority relative to its standard Delta method counterpart, using various

empirically relevant simulation designs. Our results confirm that, in contrast with the Delta

method, the proposed procedures can capture some of the distributional irregularities arising

from the concentration of low observations and the thickness of the right tail. More broadly, our

findings suggest that the Fieller-type approach holds concrete promise for many other inequality

measures, as well as for inference on differences between measures.
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